Mining text and social streams: a review

C. Aggarwal
{"title":"Mining text and social streams: a review","authors":"C. Aggarwal","doi":"10.1145/2641190.2641194","DOIUrl":null,"url":null,"abstract":"The large amount of text data which are continuously produced over time in a variety of large scale applications such as social networks results in massive streams of data. Typically massive text streams are created by very large scale interactions of individuals, or by structured creations of particular kinds of content by dedicated organizations. An example in the latter category would be the massive text streams created by news-wire services. Such text streams provide unprecedented challenges to data mining algorithms from an efficiency perspective. In this paper, we review text stream mining algorithms for a wide variety of problems in data mining such as clustering, classification and topic modeling. A recent challenge arises in the context of social streams, which are generated by large social networks such as Twitter. We also discuss a number of future challenges in this area of research.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"5 1","pages":"9-19"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2641190.2641194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The large amount of text data which are continuously produced over time in a variety of large scale applications such as social networks results in massive streams of data. Typically massive text streams are created by very large scale interactions of individuals, or by structured creations of particular kinds of content by dedicated organizations. An example in the latter category would be the massive text streams created by news-wire services. Such text streams provide unprecedented challenges to data mining algorithms from an efficiency perspective. In this paper, we review text stream mining algorithms for a wide variety of problems in data mining such as clustering, classification and topic modeling. A recent challenge arises in the context of social streams, which are generated by large social networks such as Twitter. We also discuss a number of future challenges in this area of research.
挖掘文本和社交流:综述
在社交网络等各种大规模应用中,随着时间的推移不断产生大量的文本数据,导致了大量的数据流。典型的海量文本流是由非常大规模的个人交互创建的,或者由专门的组织对特定类型的内容进行结构化的创建。后一类的一个例子是由新闻通讯社服务创建的大量文本流。这样的文本流从效率的角度对数据挖掘算法提出了前所未有的挑战。在本文中,我们回顾了文本流挖掘算法在数据挖掘中的各种问题,如聚类、分类和主题建模。最近的一个挑战出现在社交流的背景下,这是由Twitter等大型社交网络产生的。我们还讨论了这一研究领域未来的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信