Finding the Solutions of Nonlinear Equation Systems from an Interval

Cristian Cira
{"title":"Finding the Solutions of Nonlinear Equation Systems from an Interval","authors":"Cristian Cira","doi":"10.1109/SYNASC.2009.60","DOIUrl":null,"url":null,"abstract":"The paper describes an algorithm that determines the solutions of a n-dimensional nonlinear equation system within a given interval. The result is based on Semenov algorithm that isolates the solutions and improves upon it by introducing Kantorovich existence criterion. In Semenov algorithm the existence of the solution is decided by applying Newton method on each interval containing at most one solution. This article improves and completes the Semenov algorithm by determining the start iteration for each solution. With the computed start iteration the Newton method is applied to determine the solution with the precision ε. The Kantorovich error function E(k) is also computed for each iteration k. The paper contains numerical experiments.","PeriodicalId":91954,"journal":{"name":"Proceedings. International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"117 1","pages":"124-129"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2009.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes an algorithm that determines the solutions of a n-dimensional nonlinear equation system within a given interval. The result is based on Semenov algorithm that isolates the solutions and improves upon it by introducing Kantorovich existence criterion. In Semenov algorithm the existence of the solution is decided by applying Newton method on each interval containing at most one solution. This article improves and completes the Semenov algorithm by determining the start iteration for each solution. With the computed start iteration the Newton method is applied to determine the solution with the precision ε. The Kantorovich error function E(k) is also computed for each iteration k. The paper contains numerical experiments.
从区间求非线性方程组的解
本文描述了在给定区间内确定n维非线性方程组解的一种算法。结果基于分离解的Semenov算法,并通过引入Kantorovich存在准则对其进行改进。在Semenov算法中,通过在每个最多包含一个解的区间上应用牛顿法来确定解的存在性。本文通过确定每个解的开始迭代来改进和完善Semenov算法。通过计算的开始迭代,应用牛顿法确定了精度为ε的解。对于每次迭代k,还计算了Kantorovich误差函数E(k),并进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信