Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture

A. Roy, Miki Ota, A. Recati, F. Dalfovo
{"title":"Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture","authors":"A. Roy, Miki Ota, A. Recati, F. Dalfovo","doi":"10.1103/PHYSREVRESEARCH.3.013161","DOIUrl":null,"url":null,"abstract":"We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at $T=0$ may become unstable at $T\\neq0$, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at $T=0$ may become unstable at $T\neq0$, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity.
二维玻色-玻色原子混合物的有限温度自旋动力学
我们研究了在稀超冷原子气体的均匀二维二元玻色混合物中热波动的作用。我们使用平均场Hartree-Fock理论推导了混相-非混相转变的分析预测。该理论的一个重要结果是,由于自旋磁化率的发散行为,在T=0处的完全混相可能在T\neq0$处变得不稳定。我们通过使用随机(预测)Gross-Pitaevskii方程进行数值模拟来验证这一预测,其中包括超越平均场效应。我们计算了在不同温度和相互作用强度下的平衡构型,并模拟了弱外部扰动产生的自旋振荡。尽管有一些定性的一致,但两种理论之间的比较表明,平均场近似不能恰当地描述二维混合物在混相-非混相转变附近的行为,因为热涨落平滑了相图和自旋动力学中的所有尖锐特征,除了远低于超流体临界温度的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信