Allegro-Legato: Scalable, Fast, and Robust Neural-Network Quantum Molecular Dynamics via Sharpness-Aware Minimization

Hikaru Ibayashi, Taufeq Mohammed Razakh, Liqiu Yang, Thomas M Linker, M. Olguin, Shinnosuke Hattori, Ye Luo, R. Kalia, A. Nakano, K. Nomura, P. Vashishta
{"title":"Allegro-Legato: Scalable, Fast, and Robust Neural-Network Quantum Molecular Dynamics via Sharpness-Aware Minimization","authors":"Hikaru Ibayashi, Taufeq Mohammed Razakh, Liqiu Yang, Thomas M Linker, M. Olguin, Shinnosuke Hattori, Ye Luo, R. Kalia, A. Nakano, K. Nomura, P. Vashishta","doi":"10.48550/arXiv.2303.08169","DOIUrl":null,"url":null,"abstract":"Neural-network quantum molecular dynamics (NNQMD) simulations based on machine learning are revolutionizing atomistic simulations of materials by providing quantum-mechanical accuracy but orders-of-magnitude faster, illustrated by ACM Gordon Bell prize (2020) and finalist (2021). State-of-the-art (SOTA) NNQMD model founded on group theory featuring rotational equivariance and local descriptors has provided much higher accuracy and speed than those models, thus named Allegro (meaning fast). On massively parallel supercomputers, however, it suffers a fidelity-scaling problem, where growing number of unphysical predictions of interatomic forces prohibits simulations involving larger numbers of atoms for longer times. Here, we solve this problem by combining the Allegro model with sharpness aware minimization (SAM) for enhancing the robustness of model through improved smoothness of the loss landscape. The resulting Allegro-Legato (meaning fast and\"smooth\") model was shown to elongate the time-to-failure $t_\\textrm{failure}$, without sacrificing computational speed or accuracy. Specifically, Allegro-Legato exhibits much weaker dependence of timei-to-failure on the problem size, $t_{\\textrm{failure}} \\propto N^{-0.14}$ ($N$ is the number of atoms) compared to the SOTA Allegro model $\\left(t_{\\textrm{failure}} \\propto N^{-0.29}\\right)$, i.e., systematically delayed time-to-failure, thus allowing much larger and longer NNQMD simulations without failure. The model also exhibits excellent computational scalability and GPU acceleration on the Polaris supercomputer at Argonne Leadership Computing Facility. Such scalable, accurate, fast and robust NNQMD models will likely find broad applications in NNQMD simulations on emerging exaflop/s computers, with a specific example of accounting for nuclear quantum effects in the dynamics of ammonia.","PeriodicalId":92039,"journal":{"name":"ICT systems security and privacy protection : 32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings. IFIP TC11 International Information Security Conference (32nd : 2017 : Rome, Italy)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT systems security and privacy protection : 32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings. IFIP TC11 International Information Security Conference (32nd : 2017 : Rome, Italy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.08169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neural-network quantum molecular dynamics (NNQMD) simulations based on machine learning are revolutionizing atomistic simulations of materials by providing quantum-mechanical accuracy but orders-of-magnitude faster, illustrated by ACM Gordon Bell prize (2020) and finalist (2021). State-of-the-art (SOTA) NNQMD model founded on group theory featuring rotational equivariance and local descriptors has provided much higher accuracy and speed than those models, thus named Allegro (meaning fast). On massively parallel supercomputers, however, it suffers a fidelity-scaling problem, where growing number of unphysical predictions of interatomic forces prohibits simulations involving larger numbers of atoms for longer times. Here, we solve this problem by combining the Allegro model with sharpness aware minimization (SAM) for enhancing the robustness of model through improved smoothness of the loss landscape. The resulting Allegro-Legato (meaning fast and"smooth") model was shown to elongate the time-to-failure $t_\textrm{failure}$, without sacrificing computational speed or accuracy. Specifically, Allegro-Legato exhibits much weaker dependence of timei-to-failure on the problem size, $t_{\textrm{failure}} \propto N^{-0.14}$ ($N$ is the number of atoms) compared to the SOTA Allegro model $\left(t_{\textrm{failure}} \propto N^{-0.29}\right)$, i.e., systematically delayed time-to-failure, thus allowing much larger and longer NNQMD simulations without failure. The model also exhibits excellent computational scalability and GPU acceleration on the Polaris supercomputer at Argonne Leadership Computing Facility. Such scalable, accurate, fast and robust NNQMD models will likely find broad applications in NNQMD simulations on emerging exaflop/s computers, with a specific example of accounting for nuclear quantum effects in the dynamics of ammonia.
快板连奏:通过锐度感知最小化的可扩展、快速和鲁棒的神经网络量子分子动力学
基于机器学习的神经网络量子分子动力学(NNQMD)模拟通过提供量子力学精度但速度更快的数量级,正在彻底改变材料的原子模拟,ACM戈登贝尔奖(2020年)和决赛(2021年)说明了这一点。最先进的(SOTA) NNQMD模型建立在具有旋转等方差和局部描述符的群论基础上,提供了比这些模型更高的精度和速度,因此被命名为Allegro(意思是快)。然而,在大规模并行的超级计算机上,它遇到了保真度缩放问题,即越来越多的原子间相互作用的非物理预测,使得涉及更多原子的模拟无法长时间进行。为了解决这一问题,我们将Allegro模型与锐利感知最小化(锐利感知最小化)相结合,通过提高损失图像的平滑度来增强模型的鲁棒性。由此产生的Allegro-Legato(意思是快速和“平滑”)模型被证明可以延长失败时间$t_\textrm{failure}$,而不会牺牲计算速度或准确性。具体来说,与SOTA Allegro模型$\left(t_{\textrm{failure}} \propto N^{-0.29}\right)$相比,Allegro- legato对问题大小$t_{\textrm{failure}} \propto N^{-0.14}$ ($N$是原子数)的依赖时间要弱得多,即系统地延迟了故障时间,从而允许更大更长的NNQMD模拟而不会失败。该模型在阿贡领导计算设施的北极星超级计算机上也表现出出色的计算可扩展性和GPU加速。这种可扩展的、准确的、快速的和健壮的NNQMD模型可能会在新兴的exaflop/s计算机上的NNQMD模拟中找到广泛的应用,其中一个具体的例子是在氨动力学中计算核量子效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信