{"title":"Confidence bands for inverse regression models with application to gel electrophoresis","authors":"M. Birke, N. Bissantz, H. Holzmann","doi":"10.17877/DE290R-14439","DOIUrl":null,"url":null,"abstract":"We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-14439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two period functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 10711095] we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract.