{"title":"One-class classification based river detection in remote sensing image","authors":"S. Bo, Yongju Jing","doi":"10.1109/CISP-BMEI.2017.8302011","DOIUrl":null,"url":null,"abstract":"Target detection is a fundamental problem in remote sensing images analysis. Multi-class classifiers are usually used in target detection. However, one-class classifier requires only the training samples of positive class, which has obvious advantages in specific target extraction. Based on one-class classification, the river target detection in remote sensing image is studied in this paper. The target detection process is divided into two phases: coarse screening and fine detection. In the screening phase, most non-target areas are excluded based on one-class classification. The fine detection phase extracts complex features from the target candidate regions and detects the river target by feature matching method. Based on one-class classification, the proposed method reduces the time complexity in target detection.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Target detection is a fundamental problem in remote sensing images analysis. Multi-class classifiers are usually used in target detection. However, one-class classifier requires only the training samples of positive class, which has obvious advantages in specific target extraction. Based on one-class classification, the river target detection in remote sensing image is studied in this paper. The target detection process is divided into two phases: coarse screening and fine detection. In the screening phase, most non-target areas are excluded based on one-class classification. The fine detection phase extracts complex features from the target candidate regions and detects the river target by feature matching method. Based on one-class classification, the proposed method reduces the time complexity in target detection.