E. Asarin, Michel Blockelet, Aldric Degorre, C. Dima, C. Mu
{"title":"Asymptotic behaviour in temporal logic","authors":"E. Asarin, Michel Blockelet, Aldric Degorre, C. Dima, C. Mu","doi":"10.1145/2603088.2603158","DOIUrl":null,"url":null,"abstract":"We study the \"approximability\" of unbounded temporal operators with time-bounded operators, as soon as some time bounds tend to ∞. More specifically, for formulas in the fragments PLTL⋄ and PLTL◻ of the Parametric Linear Temporal Logic of Alur et al., we provide algorithms for computing the limit entropy as all parameters tend to ∞. As a consequence, we can decide the problem whether the limit entropy of a formula in one of the two fragments coincides with that of its time-unbounded transformation, obtained by replacing each occurrence of a time-bounded operator into its time-unbounded version. The algorithms proceed by translation of the two fragments of PLTL into two classes of discrete-time timed automata and analysis of their strongly-connected components.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We study the "approximability" of unbounded temporal operators with time-bounded operators, as soon as some time bounds tend to ∞. More specifically, for formulas in the fragments PLTL⋄ and PLTL◻ of the Parametric Linear Temporal Logic of Alur et al., we provide algorithms for computing the limit entropy as all parameters tend to ∞. As a consequence, we can decide the problem whether the limit entropy of a formula in one of the two fragments coincides with that of its time-unbounded transformation, obtained by replacing each occurrence of a time-bounded operator into its time-unbounded version. The algorithms proceed by translation of the two fragments of PLTL into two classes of discrete-time timed automata and analysis of their strongly-connected components.