{"title":"Channel Augmented Joint Learning for Visible-Infrared Recognition","authors":"Mang Ye, Weijian Ruan, Bo Du, Mike Zheng Shou","doi":"10.1109/ICCV48922.2021.01331","DOIUrl":null,"url":null,"abstract":"This paper introduces a powerful channel augmented joint learning strategy for the visible-infrared recognition problem. For data augmentation, most existing methods directly adopt the standard operations designed for single-modality visible images, and thus do not fully consider the imagery properties in visible to infrared matching. Our basic idea is to homogenously generate color-irrelevant images by randomly exchanging the color channels. It can be seamlessly integrated into existing augmentation operations without modifying the network, consistently improving the robustness against color variations. Incorporated with a random erasing strategy, it further greatly enriches the diversity by simulating random occlusions. For cross-modality metric learning, we design an enhanced channel-mixed learning strategy to simultaneously handle the intra-and cross-modality variations with squared difference for stronger discriminability. Besides, a channel-augmented joint learning strategy is further developed to explicitly optimize the outputs of augmented images. Extensive experiments with insightful analysis on two visible-infrared recognition tasks show that the proposed strategies consistently improve the accuracy. Without auxiliary information, it improves the state-of-the-art Rank-1/mAP by 14.59%/13.00% on the large-scale SYSU-MM01 dataset.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"46 1","pages":"13547-13556"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
This paper introduces a powerful channel augmented joint learning strategy for the visible-infrared recognition problem. For data augmentation, most existing methods directly adopt the standard operations designed for single-modality visible images, and thus do not fully consider the imagery properties in visible to infrared matching. Our basic idea is to homogenously generate color-irrelevant images by randomly exchanging the color channels. It can be seamlessly integrated into existing augmentation operations without modifying the network, consistently improving the robustness against color variations. Incorporated with a random erasing strategy, it further greatly enriches the diversity by simulating random occlusions. For cross-modality metric learning, we design an enhanced channel-mixed learning strategy to simultaneously handle the intra-and cross-modality variations with squared difference for stronger discriminability. Besides, a channel-augmented joint learning strategy is further developed to explicitly optimize the outputs of augmented images. Extensive experiments with insightful analysis on two visible-infrared recognition tasks show that the proposed strategies consistently improve the accuracy. Without auxiliary information, it improves the state-of-the-art Rank-1/mAP by 14.59%/13.00% on the large-scale SYSU-MM01 dataset.