{"title":"Research on the development and intelligent application of power environmental protection platform based on big data","authors":"D. Shao, Li Shi, Zhihua He, Runzhou Guo","doi":"10.1515/ehs-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the practical effect of the power environmental protection platform, this paper combines the big data technology to develop and design the power environmental protection platform. In this paper, a power factor correction (PFC) and resonant half-bridge joint controller is used to combine the traditional two-level topology into one-level topology. Moreover, this paper adopts a fixed frequency half-bridge LLC resonant converter with a simple control circuit to obtain a stable resonant half-bridge controller with a fixed output voltage. The choice of this overall power topology architecture can not only meet the design requirements, save costs and simplify the control of the circuit, but also improve the efficiency of the whole machine and the performance of the power environmental protection platform. The experimental research shows that the power environmental protection platform based on big data proposed in this paper can effectively improve the effectiveness of power environmental protection strategies.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In order to improve the practical effect of the power environmental protection platform, this paper combines the big data technology to develop and design the power environmental protection platform. In this paper, a power factor correction (PFC) and resonant half-bridge joint controller is used to combine the traditional two-level topology into one-level topology. Moreover, this paper adopts a fixed frequency half-bridge LLC resonant converter with a simple control circuit to obtain a stable resonant half-bridge controller with a fixed output voltage. The choice of this overall power topology architecture can not only meet the design requirements, save costs and simplify the control of the circuit, but also improve the efficiency of the whole machine and the performance of the power environmental protection platform. The experimental research shows that the power environmental protection platform based on big data proposed in this paper can effectively improve the effectiveness of power environmental protection strategies.