{"title":"On the degree of algebraic cycles on hypersurfaces","authors":"Matthias Paulsen","doi":"10.1515/crelle-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract Let X ⊂ ℙ 4 {X\\subset\\mathbb{P}^{4}} be a very general hypersurface of degree d ≥ 6 {d\\geq 6} . Griffiths and Harris conjectured in 1985 that the degree of every curve C ⊂ X {C\\subset X} is divisible by d. Despite substantial progress by Kollár in 1991, this conjecture is not known for a single value of d. Building on Kollár’s method, we prove this conjecture for infinitely many d, the smallest one being d = 5005 {d=5005} . The set of these degrees d has positive density. We also prove a higher-dimensional analogue of this result and construct smooth hypersurfaces defined over ℚ {\\mathbb{Q}} that satisfy the conjecture.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"84 1","pages":"137 - 148"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0036","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let X ⊂ ℙ 4 {X\subset\mathbb{P}^{4}} be a very general hypersurface of degree d ≥ 6 {d\geq 6} . Griffiths and Harris conjectured in 1985 that the degree of every curve C ⊂ X {C\subset X} is divisible by d. Despite substantial progress by Kollár in 1991, this conjecture is not known for a single value of d. Building on Kollár’s method, we prove this conjecture for infinitely many d, the smallest one being d = 5005 {d=5005} . The set of these degrees d has positive density. We also prove a higher-dimensional analogue of this result and construct smooth hypersurfaces defined over ℚ {\mathbb{Q}} that satisfy the conjecture.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.