StructSim: Querying Structural Node Similarity at Billion Scale

Xiaoshuang Chen, Longbin Lai, Lu Qin, Xuemin Lin
{"title":"StructSim: Querying Structural Node Similarity at Billion Scale","authors":"Xiaoshuang Chen, Longbin Lai, Lu Qin, Xuemin Lin","doi":"10.1109/ICDE48307.2020.00211","DOIUrl":null,"url":null,"abstract":"Structural node similarity is widely used in analyzing complex networks. As one of the structural node similarity metrics, role similarity has the good merit of indicating automorphism (isomorphism). Existing algorithms to compute role similarity (e.g., RoleSim and NED) suffer from severe performance bottlenecks, and thus cannot handle large real-world graphs. In this paper, we propose a new framework StructSim to compute nodes’ role similarity. Under this framework, we prove that StructSim is guaranteed to be an admissible role similarity metric based on the maximum matching. While maximum matching is too costly to scale, we then devise the BinCount matching to speed up the computation. BinCount-based StructSim admits a precomputed index to query one single pair in O(k log D) time, where k is a small user-defined parameter and D is the maximum node degree. Extensive empirical studies show that StructSim is significantly faster than existing works for computing structural node similarities on the real-world graphs, with comparable effectiveness.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"30 1","pages":"1950-1953"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Structural node similarity is widely used in analyzing complex networks. As one of the structural node similarity metrics, role similarity has the good merit of indicating automorphism (isomorphism). Existing algorithms to compute role similarity (e.g., RoleSim and NED) suffer from severe performance bottlenecks, and thus cannot handle large real-world graphs. In this paper, we propose a new framework StructSim to compute nodes’ role similarity. Under this framework, we prove that StructSim is guaranteed to be an admissible role similarity metric based on the maximum matching. While maximum matching is too costly to scale, we then devise the BinCount matching to speed up the computation. BinCount-based StructSim admits a precomputed index to query one single pair in O(k log D) time, where k is a small user-defined parameter and D is the maximum node degree. Extensive empirical studies show that StructSim is significantly faster than existing works for computing structural node similarities on the real-world graphs, with comparable effectiveness.
StructSim:在十亿尺度上查询结构节点相似度
结构节点相似性在复杂网络分析中得到了广泛的应用。角色相似度作为结构节点相似度度量之一,具有表示自同构(同构)的优点。现有的计算角色相似度的算法(例如,RoleSim和NED)存在严重的性能瓶颈,因此无法处理现实世界中的大型图形。本文提出了一个新的框架StructSim来计算节点的角色相似度。在此框架下,我们证明了StructSim是基于最大匹配的可接受的角色相似度度量。虽然最大匹配的成本太高,无法扩展,但我们随后设计了BinCount匹配来加快计算速度。基于bincount的StructSim允许预先计算索引在O(k log D)时间内查询单个对,其中k是用户自定义的小参数,D是最大节点度。大量的实证研究表明,StructSim在计算现实世界图上的结构节点相似度方面比现有的工作要快得多,并且具有相当的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信