From the Editor

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
J. Wagner
{"title":"From the Editor","authors":"J. Wagner","doi":"10.1177/8756087920988463","DOIUrl":null,"url":null,"abstract":"Layered silicates present interaction sites at both faces and edges of the nanolayers and silane coupling agents that locate at both sites lead to polymer nanocomposites with superior melt strength and properties. This work’s objective was (a) to investigate the effectiveness of solvent-free, vapor phase, silane treatment of the nanolayers for formulating masterbatches and (b) to compare the mechanical properties of 1mil thick blown films from polypropylene copolymer nanocomposites with such coupling, to films from the neat polypropylene. The nanocomposite blown film tensile modulus and tensile strength improved along both the draw direction and the transverse direction. In addition, their elongation to failure was close to 500% along both directions, in contrast to values of 500% along MD and 170% along TD for the neat PP copolymer. These trends may be understood in terms of the crystalline lamellar orientation distribution in the films. FESEM images revealed that cross-hatched lamellae were absent from the unfilled PP blown film and were pervasive in the nanocomposite blown film. The nanolayers were oriented in the film plane with the longer dimension largely along the MD. The lower extent of lamellar orientation around nanolayers may be attributed to the strong reduction in the polymer chain mobility attached to the nanolayers. Wagner 5","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"24 1","pages":"3 - 6"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/8756087920988463","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Layered silicates present interaction sites at both faces and edges of the nanolayers and silane coupling agents that locate at both sites lead to polymer nanocomposites with superior melt strength and properties. This work’s objective was (a) to investigate the effectiveness of solvent-free, vapor phase, silane treatment of the nanolayers for formulating masterbatches and (b) to compare the mechanical properties of 1mil thick blown films from polypropylene copolymer nanocomposites with such coupling, to films from the neat polypropylene. The nanocomposite blown film tensile modulus and tensile strength improved along both the draw direction and the transverse direction. In addition, their elongation to failure was close to 500% along both directions, in contrast to values of 500% along MD and 170% along TD for the neat PP copolymer. These trends may be understood in terms of the crystalline lamellar orientation distribution in the films. FESEM images revealed that cross-hatched lamellae were absent from the unfilled PP blown film and were pervasive in the nanocomposite blown film. The nanolayers were oriented in the film plane with the longer dimension largely along the MD. The lower extent of lamellar orientation around nanolayers may be attributed to the strong reduction in the polymer chain mobility attached to the nanolayers. Wagner 5
来自编辑
层状硅酸盐在纳米层的表面和边缘都存在相互作用位点,硅烷偶联剂位于这两个位点,导致聚合物纳米复合材料具有优异的熔融强度和性能。这项工作的目的是(a)研究无溶剂、气相、硅烷处理纳米层的有效性,以配制母粒;(b)比较具有这种偶联的1mil厚聚丙烯共聚物纳米复合材料吹膜与纯聚丙烯膜的机械性能。纳米复合吹塑膜的拉伸模量和拉伸强度沿拉伸方向和横向均有提高。此外,它们的断裂延伸率在两个方向上都接近500%,而纯PP共聚物在MD方向上的延伸率为500%,在TD方向上的延伸率为170%。这些趋势可以从薄膜中晶体片层取向分布的角度来理解。FESEM图像显示,未填充的PP吹膜中没有交叉孵化的片层,而在纳米复合吹膜中普遍存在。纳米层在膜平面上取向较长,主要沿MD方向取向。纳米层周围的层状取向程度较低可能是由于纳米层所附着的聚合物链迁移率大大降低。瓦格纳5
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信