{"title":"Geometric intuition and algorithms for Ev-SVM","authors":"Á. Jiménez, A. Takeda, J. Lázaro","doi":"10.5555/2789272.2789283","DOIUrl":null,"url":null,"abstract":"In this work we address the Ev-SVM model proposed by Perez-Cruz et al. as an extension of the traditional v support vector classification model (v-SVM). Through an enhancement of the range of admissible values for the regularization parameter v, the Ev-SVM has been shown to be able to produce a wider variety of decision functions, giving rise to a better adaptability to the data. However, while a clear and intuitive geometric interpretation can be given for the v-SVM model as a nearest-point problem in reduced convex hulls (RCH-NPP), no previous work has been made in developing such intuition for the Ev-SVM model. In this paper we show how Ev-SVM can be reformulated as a geometrical problem that generalizes RCH-NPP, providing new insights into this model. Under this novel point of view, we propose the RapMinos algorithm, able to solve Ev-SVM more efficiently than the current methods. Furthermore, we show how RapMinos is able to address the Ev-SVM model for any choice of regularization norm lp ≥1 seamlessly, which further extends the SVM model flexibility beyond the usual Ev-SVM models.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"29 1","pages":"323-369"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2789283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work we address the Ev-SVM model proposed by Perez-Cruz et al. as an extension of the traditional v support vector classification model (v-SVM). Through an enhancement of the range of admissible values for the regularization parameter v, the Ev-SVM has been shown to be able to produce a wider variety of decision functions, giving rise to a better adaptability to the data. However, while a clear and intuitive geometric interpretation can be given for the v-SVM model as a nearest-point problem in reduced convex hulls (RCH-NPP), no previous work has been made in developing such intuition for the Ev-SVM model. In this paper we show how Ev-SVM can be reformulated as a geometrical problem that generalizes RCH-NPP, providing new insights into this model. Under this novel point of view, we propose the RapMinos algorithm, able to solve Ev-SVM more efficiently than the current methods. Furthermore, we show how RapMinos is able to address the Ev-SVM model for any choice of regularization norm lp ≥1 seamlessly, which further extends the SVM model flexibility beyond the usual Ev-SVM models.