Excess APP O-glycosylation by GalNAc-T6 decreases A&bgr; production

K. Akasaka-Manya, Masaki Kawamura, H. Tsumoto, Yuko Saito, Y. Tachida, S. Kitazume, H. Hatsuta, Y. Miura, S. Hisanaga, S. Murayama, Y. Hashimoto, H. Manya, T. Endo
{"title":"Excess APP O-glycosylation by GalNAc-T6 decreases A&bgr; production","authors":"K. Akasaka-Manya, Masaki Kawamura, H. Tsumoto, Yuko Saito, Y. Tachida, S. Kitazume, H. Hatsuta, Y. Miura, S. Hisanaga, S. Murayama, Y. Hashimoto, H. Manya, T. Endo","doi":"10.1093/jb/mvw056","DOIUrl":null,"url":null,"abstract":"Alterations of the structure and/or amount of glycans present on proteins are associated with many diseases. We previously demonstrated that changes in N-glycans alter A&bgr; production. In the present study, we focused on the relationship between Alzheimer’s disease (AD) and O-glycan, another type of glycan. The UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) family functions in the first step of mucin-type O-glycan synthesis. Analysis of the expression of GalNAc-Ts in the human brain using real-time PCR revealed that the expression of several GalNAc-Ts was altered with sporadic AD progression. Three of these GalNAc-Ts (GalNAc-T1, GalNAc-T4 and GalNAc-T6) were transfected into HEK293T cells to examine their impact on A&bgr; production. Transfection of GalNAc-T6 significantly reduced both A&bgr;1-40 and A&bgr;1-42 generation, but GalNAc-T1 and GalNAc-T4 only reduced A&bgr;1-40 generation. Although these three GalNAc-Ts exhibited enzymatic activities on soluble amyloid precursor protein (APP), the GalNAc transferase activity of GalNAc-T6 to APP was most prominent. The expression of &agr;-secretase and &bgr;-secretase was slightly altered in the transfected cells, but the activities of &agr;-secretase and &bgr;-secretase were not significantly altered. These data suggest that excess O-glycosylation on APP by GalNAc-T6 inhibits A&bgr; production.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":"1 1","pages":"99–111"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Alterations of the structure and/or amount of glycans present on proteins are associated with many diseases. We previously demonstrated that changes in N-glycans alter A&bgr; production. In the present study, we focused on the relationship between Alzheimer’s disease (AD) and O-glycan, another type of glycan. The UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) family functions in the first step of mucin-type O-glycan synthesis. Analysis of the expression of GalNAc-Ts in the human brain using real-time PCR revealed that the expression of several GalNAc-Ts was altered with sporadic AD progression. Three of these GalNAc-Ts (GalNAc-T1, GalNAc-T4 and GalNAc-T6) were transfected into HEK293T cells to examine their impact on A&bgr; production. Transfection of GalNAc-T6 significantly reduced both A&bgr;1-40 and A&bgr;1-42 generation, but GalNAc-T1 and GalNAc-T4 only reduced A&bgr;1-40 generation. Although these three GalNAc-Ts exhibited enzymatic activities on soluble amyloid precursor protein (APP), the GalNAc transferase activity of GalNAc-T6 to APP was most prominent. The expression of &agr;-secretase and &bgr;-secretase was slightly altered in the transfected cells, but the activities of &agr;-secretase and &bgr;-secretase were not significantly altered. These data suggest that excess O-glycosylation on APP by GalNAc-T6 inhibits A&bgr; production.
GalNAc-T6过量的APP o糖基化可降低A&bgr;生产
蛋白质上存在的聚糖的结构和/或数量的改变与许多疾病有关。我们之前已经证明n -聚糖的改变会改变A&bgr;生产。在本研究中,我们重点研究了阿尔茨海默病(AD)与另一种类型的聚糖o -聚糖之间的关系。多肽n-乙酰半乳糖氨基转移酶(GalNAc-T)家族在粘蛋白型o -聚糖合成的第一步起作用。利用实时荧光定量PCR分析GalNAc-Ts在人脑中的表达,发现几种GalNAc-Ts的表达随着散发性AD的进展而改变。其中三种GalNAc-Ts (GalNAc-T1, GalNAc-T4和GalNAc-T6)被转染到HEK293T细胞中,以检测它们对A&bgr的影响;生产。转染GalNAc-T6可显著减少A&bgr;1-40和A&bgr;1-42代,但GalNAc-T1和GalNAc-T4仅减少A&bgr;1-40代。虽然这3种GalNAc- ts对可溶性淀粉样前体蛋白(APP)具有酶活性,但GalNAc- t6对APP的GalNAc转移酶活性最为突出。转染后细胞中&agr;-secretase和&bgr;-secretase的表达有轻微变化,但&agr;-secretase和&bgr;-secretase的活性无明显变化。这些数据表明GalNAc-T6在APP上过量的o糖基化可抑制A&bgr;生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信