{"title":"Theoretical cluster decay predictions for the nuclei 245−260Md with different nuclear potentials","authors":"A. Izadpanah, S. S. Hosseini, V. Zanganeh","doi":"10.1142/s0218301320500950","DOIUrl":null,"url":null,"abstract":"We have studied systematically the alpha decay and cluster radioactivity half-life of heavy [Formula: see text]Mendelevium ([Formula: see text]) isotopes. The alpha decays from Md isotopes have been studied within the framework of Coulomb and proximity potential model using 14 different versions of nuclear potentials. Also, we have studied the half-lives of alpha decay of Md nuclei within the nuclear potentials generalized liquid drop model (GLDM) and also within GLDM with modified different nuclear potentials, namely proximity potential 2010, 1977, 1988, 2000 and 2002. Moreover, the half-lives of the [Formula: see text]-decay and cluster radioactivity calculated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal decay law (UDL) of Qi et al. and the Unified formula of half-lives for both the [Formula: see text]-decay and cluster radioactivity (UFADCR) of Ni et al. and found to be in good agreement. Our results have been compared with experimental data and demonstrate the acceptability of the approach. Among the different proximity potentials, GLDM with proximity 1977 version (GLDM[Formula: see text][Formula: see text][Formula: see text]P77) ([Formula: see text]) provides the best description for alpha decay studies with low deviation.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218301320500950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have studied systematically the alpha decay and cluster radioactivity half-life of heavy [Formula: see text]Mendelevium ([Formula: see text]) isotopes. The alpha decays from Md isotopes have been studied within the framework of Coulomb and proximity potential model using 14 different versions of nuclear potentials. Also, we have studied the half-lives of alpha decay of Md nuclei within the nuclear potentials generalized liquid drop model (GLDM) and also within GLDM with modified different nuclear potentials, namely proximity potential 2010, 1977, 1988, 2000 and 2002. Moreover, the half-lives of the [Formula: see text]-decay and cluster radioactivity calculated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal decay law (UDL) of Qi et al. and the Unified formula of half-lives for both the [Formula: see text]-decay and cluster radioactivity (UFADCR) of Ni et al. and found to be in good agreement. Our results have been compared with experimental data and demonstrate the acceptability of the approach. Among the different proximity potentials, GLDM with proximity 1977 version (GLDM[Formula: see text][Formula: see text][Formula: see text]P77) ([Formula: see text]) provides the best description for alpha decay studies with low deviation.