Valentin Donev, Rodrigo Díaz Flores, Lukas Eberhardsteiner, Luis Zelaya-Lainez, Christian Hellmich, Martin Buchta, Bernhard L. A. Pichler
{"title":"Instrumentation of Field-Testing Sites for Dynamic Characterization of the Temperature-Dependent Stiffness of Pavements and Their Layers","authors":"Valentin Donev, Rodrigo Díaz Flores, Lukas Eberhardsteiner, Luis Zelaya-Lainez, Christian Hellmich, Martin Buchta, Bernhard L. A. Pichler","doi":"10.1155/2023/2857660","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Falling weight deflectometer (FWD) tests are performed worldwide for assessing the health of pavement structures. Interpretation of FWD-measured surface deflections turns out to be challenging because the behavior of pavement structures is temperature-dependent. In order to investigate the influence of temperature on the overall pavement performance and on the stiffness of individual layers, temperature sensors, asphalt strain gauges, and accelerometers were installed into one rigid (concrete) and two flexible (asphalt) pavement structures, mostly at layer interfaces. Three different methods for installation of the strain gauges are compared. From correspondingly gained experience, it is recommended to install a steel dummy as a place-holder into the surface of hot asphalt layers, immediately after their construction and right before their compaction, and to replace the dummy with the actual sensor right before the installation of the next layer. Concerning the first data obtained from dynamic testing at the field-testing sites, FWD tests performed at different temperatures deliver, as expected, different surface deflections. As for the rigid pavement, sledgehammer strokes onto a metal plate, transmitted to the pavement via a rubber pad, yield accelerometer readings that allow for detection of curling (=temperature-gradient-induced partial loss of contact of the concrete slab from lower layers). In the absence of curling, the here-proposed sledgehammer tests yield accelerometer readings that allow for quantification of the runtime of longitudinal waves through asphalt, cement-stabilized, and unbound layers, such that their stiffness can be quantified using the theory of elastic wave propagation through isotropic media.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2023 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/2857660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/2857660","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Falling weight deflectometer (FWD) tests are performed worldwide for assessing the health of pavement structures. Interpretation of FWD-measured surface deflections turns out to be challenging because the behavior of pavement structures is temperature-dependent. In order to investigate the influence of temperature on the overall pavement performance and on the stiffness of individual layers, temperature sensors, asphalt strain gauges, and accelerometers were installed into one rigid (concrete) and two flexible (asphalt) pavement structures, mostly at layer interfaces. Three different methods for installation of the strain gauges are compared. From correspondingly gained experience, it is recommended to install a steel dummy as a place-holder into the surface of hot asphalt layers, immediately after their construction and right before their compaction, and to replace the dummy with the actual sensor right before the installation of the next layer. Concerning the first data obtained from dynamic testing at the field-testing sites, FWD tests performed at different temperatures deliver, as expected, different surface deflections. As for the rigid pavement, sledgehammer strokes onto a metal plate, transmitted to the pavement via a rubber pad, yield accelerometer readings that allow for detection of curling (=temperature-gradient-induced partial loss of contact of the concrete slab from lower layers). In the absence of curling, the here-proposed sledgehammer tests yield accelerometer readings that allow for quantification of the runtime of longitudinal waves through asphalt, cement-stabilized, and unbound layers, such that their stiffness can be quantified using the theory of elastic wave propagation through isotropic media.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.