{"title":"Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment","authors":"Wenyan Wu, Shuo Yang","doi":"10.1109/CVPRW.2017.261","DOIUrl":null,"url":null,"abstract":"Face alignment is a critical topic in the computer vision community. Numerous efforts have been made and various benchmark datasets have been released in recent decades. However, two significant issues remain in recent datasets, e.g., Intra-Dataset Variation and Inter-Dataset Variation. Inter-Dataset Variation refers to bias on expression, head pose, etc. inside one certain dataset, while Intra-Dataset Variation refers to different bias across different datasets. To address the mentioned problems, we proposed a novel Deep Variation Leveraging Network (DVLN), which consists of two strong coupling sub-networks, e.g., Dataset-Across Network (DA-Net) and Candidate-Decision Network (CD-Net). Extensive evaluations show that our approach demonstrates real-time performance and dramatically outperforms state-of-the-art methods on the challenging 300-W dataset.,,,,,, To address the mentioned problems, we proposed a novel Deep Variation Leveraging Network (DVLN), which consists of two strong coupling sub-networks, e.g., Dataset-Across Network (DA-Net) and Candidate-Decision Network (CD-Net). In particular, DA-Net takes advantage of different characteristics and distributions across different datasets, while CD-Net makes a final decision on candidate hypotheses given by DA-Net to leverage variations within one certain dataset. Extensive evaluations show that our approach demonstrates real-time performance and dramatically outperforms state-of-the-art methods on the challenging 300-W dataset.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"26 1","pages":"2096-2105"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100
Abstract
Face alignment is a critical topic in the computer vision community. Numerous efforts have been made and various benchmark datasets have been released in recent decades. However, two significant issues remain in recent datasets, e.g., Intra-Dataset Variation and Inter-Dataset Variation. Inter-Dataset Variation refers to bias on expression, head pose, etc. inside one certain dataset, while Intra-Dataset Variation refers to different bias across different datasets. To address the mentioned problems, we proposed a novel Deep Variation Leveraging Network (DVLN), which consists of two strong coupling sub-networks, e.g., Dataset-Across Network (DA-Net) and Candidate-Decision Network (CD-Net). Extensive evaluations show that our approach demonstrates real-time performance and dramatically outperforms state-of-the-art methods on the challenging 300-W dataset.,,,,,, To address the mentioned problems, we proposed a novel Deep Variation Leveraging Network (DVLN), which consists of two strong coupling sub-networks, e.g., Dataset-Across Network (DA-Net) and Candidate-Decision Network (CD-Net). In particular, DA-Net takes advantage of different characteristics and distributions across different datasets, while CD-Net makes a final decision on candidate hypotheses given by DA-Net to leverage variations within one certain dataset. Extensive evaluations show that our approach demonstrates real-time performance and dramatically outperforms state-of-the-art methods on the challenging 300-W dataset.