TMB: Automatic Differentiation and Laplace Approximation

K. Kristensen, Anders Nielsen, Casper W. Berg, H. Skaug, B. Bell
{"title":"TMB: Automatic Differentiation and Laplace Approximation","authors":"K. Kristensen, Anders Nielsen, Casper W. Berg, H. Skaug, B. Bell","doi":"10.18637/jss.v070.i05","DOIUrl":null,"url":null,"abstract":"TMB is an open source R package that enables quick implementation of complex nonlinear random effect (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, admb-project.org). In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three) of the joint likelihood. The computations are designed to be fast for problems with many random effects (~10^6) and parameters (~10^3). Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at this http URL","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"641","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v070.i05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 641

Abstract

TMB is an open source R package that enables quick implementation of complex nonlinear random effect (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, admb-project.org). In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three) of the joint likelihood. The computations are designed to be fast for problems with many random effects (~10^6) and parameters (~10^3). Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at this http URL
TMB:自动微分和拉普拉斯近似
TMB是一个开源的R包,可以快速实现复杂的非线性随机效应(潜在变量)模型,其方式类似于已建立的AD模型生成器包(ADMB, admbproject.org)。此外,它还提供了方便的并行计算访问。用户将数据和随机效应的联合似然定义为c++模板函数,而所有其他操作都在R中完成;例如,读入数据。包评估和最大化边际似然的拉普拉斯近似,其中随机效应被自动集成。这种近似及其导数是使用联合似然的自动微分(最高三阶)获得的。对于有许多随机效应(~10^6)和参数(~10^3)的问题,计算速度很快。从简单模型到随机效应为高斯随机场的大空间模型,比较了ADMB和TMB的计算时间。对于大型问题,加速范围从1.5到大约100不等,并且增益越来越大。该包和示例可在此http URL中获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信