{"title":"Fast and Stable Blind Source Separation with Rank-1 Updates","authors":"Robin Scheibler, Nobutaka Ono","doi":"10.1109/ICASSP40776.2020.9053556","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm for the blind source separation of acoustic sources. This algorithm is an alternative to the popular auxiliary function based independent vector analysis using iterative projection (AuxIVA-IP). It optimizes the same cost function, but instead of alternate updates of the rows of the demixing matrix, we propose a sequence of rank-1 updates. Remarkably, and unlike the previous method, the resulting updates do not require matrix inversion. Moreover, their computational complexity is quadratic in the number of microphones, rather than cubic in AuxIVA-IP. In addition, we show that the new method can be derived as alternate updates of the steering vectors of sources. Accordingly, we name the method iterative source steering (AuxIVA-ISS). Finally, we confirm in simulated experiments that the proposed algorithm separates sources just as well as AuxIVA-IP, at a lower computational cost.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"51 1","pages":"236-240"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
We propose a new algorithm for the blind source separation of acoustic sources. This algorithm is an alternative to the popular auxiliary function based independent vector analysis using iterative projection (AuxIVA-IP). It optimizes the same cost function, but instead of alternate updates of the rows of the demixing matrix, we propose a sequence of rank-1 updates. Remarkably, and unlike the previous method, the resulting updates do not require matrix inversion. Moreover, their computational complexity is quadratic in the number of microphones, rather than cubic in AuxIVA-IP. In addition, we show that the new method can be derived as alternate updates of the steering vectors of sources. Accordingly, we name the method iterative source steering (AuxIVA-ISS). Finally, we confirm in simulated experiments that the proposed algorithm separates sources just as well as AuxIVA-IP, at a lower computational cost.