Formally integrable complex structures on higher dimensional knot spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Fiorenza, H. Lê
{"title":"Formally integrable complex structures on higher dimensional knot spaces","authors":"D. Fiorenza, H. Lê","doi":"10.4310/jsg.2021.v19.n3.a1","DOIUrl":null,"url":null,"abstract":"Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\\rm Imm}_f(S,M)$ the space of all free immersions $\\varphi:S \\to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\\rm Imm}_f(S,M)/{\\rm Diff}^+(S)$, where ${\\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\\varphi \\in \\Omega ^r(M, TM)$ and $\\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"64 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\rm Imm}_f(S,M)$ the space of all free immersions $\varphi:S \to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\rm Imm}_f(S,M)/{\rm Diff}^+(S)$, where ${\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\varphi \in \Omega ^r(M, TM)$ and $\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.
高维结空间上形式可积的复结构
设$S$为紧定向有限维流形,$M$为有限维黎曼流形,设${\rm Imm}_f(S,M)$为所有自由浸入空间$\varphi:S \to M$,设$B^+_{i,f}(S,M)$为商空间${\rm Imm}_f(S,M)/{\rm Diff}^+(S)$,其中${\rm Diff}^+(S)$表示$S$的保定向微分同态群。在本文中,我们证明了如果$M$允许一个平行的$r$ -折叠向量叉积$\varphi \in \Omega ^r(M, TM)$与$\dim S = r-1$,则$B^+_{i,f}(S,M)$是一个形式的Kahler流形。这推广了Brylinski, LeBrun和Verbitsky在$S$是$M$中的余维2子流形,$S = S^1$或$M$分别是无扭转$G_2$流形的情况下的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信