Formally integrable complex structures on higher dimensional knot spaces

Pub Date : 2019-12-11 DOI:10.4310/jsg.2021.v19.n3.a1
D. Fiorenza, H. Lê
{"title":"Formally integrable complex structures on higher dimensional knot spaces","authors":"D. Fiorenza, H. Lê","doi":"10.4310/jsg.2021.v19.n3.a1","DOIUrl":null,"url":null,"abstract":"Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\\rm Imm}_f(S,M)$ the space of all free immersions $\\varphi:S \\to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\\rm Imm}_f(S,M)/{\\rm Diff}^+(S)$, where ${\\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\\varphi \\in \\Omega ^r(M, TM)$ and $\\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\rm Imm}_f(S,M)$ the space of all free immersions $\varphi:S \to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\rm Imm}_f(S,M)/{\rm Diff}^+(S)$, where ${\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\varphi \in \Omega ^r(M, TM)$ and $\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.
分享
查看原文
高维结空间上形式可积的复结构
设$S$为紧定向有限维流形,$M$为有限维黎曼流形,设${\rm Imm}_f(S,M)$为所有自由浸入空间$\varphi:S \to M$,设$B^+_{i,f}(S,M)$为商空间${\rm Imm}_f(S,M)/{\rm Diff}^+(S)$,其中${\rm Diff}^+(S)$表示$S$的保定向微分同态群。在本文中,我们证明了如果$M$允许一个平行的$r$ -折叠向量叉积$\varphi \in \Omega ^r(M, TM)$与$\dim S = r-1$,则$B^+_{i,f}(S,M)$是一个形式的Kahler流形。这推广了Brylinski, LeBrun和Verbitsky在$S$是$M$中的余维2子流形,$S = S^1$或$M$分别是无扭转$G_2$流形的情况下的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信