{"title":"Single-Machine Due-Window Assignment Scheduling with Resource Allocation and Generalized Earliness/Tardiness Penalties","authors":"Yu Tian","doi":"10.1142/s021759592150041x","DOIUrl":null,"url":null,"abstract":"In this study, the due-window assignment single-machine scheduling problem with resource allocation is considered, where the processing time of a job is controllable as a linear or convex function of amount of resource allocated to the job. Under common due-window and slack due-window assignments, our goal is to determine the optimal sequence of all jobs, the due-window start time, due-window size, and optimal resource allocation such that a sum of the scheduling cost (including weighted earliness/tardiness penalty, weighted number of early and tardy job, weighted due-window start time, and due-window size) and resource consumption cost is minimized. We analyze the optimality properties, and provide polynomial time solutions to solve the problem under four versions of due-window assignment and resource allocation function.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021759592150041x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, the due-window assignment single-machine scheduling problem with resource allocation is considered, where the processing time of a job is controllable as a linear or convex function of amount of resource allocated to the job. Under common due-window and slack due-window assignments, our goal is to determine the optimal sequence of all jobs, the due-window start time, due-window size, and optimal resource allocation such that a sum of the scheduling cost (including weighted earliness/tardiness penalty, weighted number of early and tardy job, weighted due-window start time, and due-window size) and resource consumption cost is minimized. We analyze the optimality properties, and provide polynomial time solutions to solve the problem under four versions of due-window assignment and resource allocation function.