Characterization of aquifer heterogeneity using cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida
{"title":"Characterization of aquifer heterogeneity using cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida","authors":"K. Cunningham","doi":"10.3133/WRI034208","DOIUrl":null,"url":null,"abstract":"This project identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer using GPR, cyclostratigraphy, borehole geophysical logs, continuously drilled cores, and paleontology. About 60 mi of GPR profiles were acquired and are used to calculate the depth to shallow geologic contacts and hydrogeologic units, image karst features, and produce a qualitative perspective of the porosity distribution within the upper part of the karstic Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County. . Descriptions of lithology, rock fabric, cyclostratigraphy, and depositional environments of 50 test coreholes were linked to geophysical data to provide a more refined hydrogeologic framework for the upper part of the Biscayne aquifer. Interpretation of depositional environments was constrained by analysis of depositional textures and molluscan and benthic foraminiferal paleontology. Digital borehole images were used to help quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify potential ground-water flow zones.","PeriodicalId":23603,"journal":{"name":"Water-Resources Investigations Report","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water-Resources Investigations Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3133/WRI034208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This project identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer using GPR, cyclostratigraphy, borehole geophysical logs, continuously drilled cores, and paleontology. About 60 mi of GPR profiles were acquired and are used to calculate the depth to shallow geologic contacts and hydrogeologic units, image karst features, and produce a qualitative perspective of the porosity distribution within the upper part of the karstic Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County. . Descriptions of lithology, rock fabric, cyclostratigraphy, and depositional environments of 50 test coreholes were linked to geophysical data to provide a more refined hydrogeologic framework for the upper part of the Biscayne aquifer. Interpretation of depositional environments was constrained by analysis of depositional textures and molluscan and benthic foraminiferal paleontology. Digital borehole images were used to help quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify potential ground-water flow zones.