Investigating the Effect of Spatial Distribution and Spatiotemporal Information on Speciation using Individual-Based Ecosystem Simulation

M. Mashayekhi, R. Gras
{"title":"Investigating the Effect of Spatial Distribution and Spatiotemporal Information on Speciation using Individual-Based Ecosystem Simulation","authors":"M. Mashayekhi, R. Gras","doi":"10.1037/e527372013-015","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the impact of species’ spatial and spatiotemporal distribution information on speciation, using an individual-based ecosystem simulation (Ecosim). For this purpose, using machine learning techniques, we try to predict if one species will split in near future. Because of the imbalanced nature of our dataset we use smote algorithm to make a relatively balanced dataset to avoid dismissing the minor class samples. Experimental results show very good predictions for the test set generated from the same run as the learning set. It also shows good results on test sets generated from different runs of Ecosim. We also observe superior results when we use, for the learning set, a run with more species compare to a run with less species. Finally we can conclude that spatial and spatiotemporal information are very effective in predicting speciation.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/e527372013-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we investigate the impact of species’ spatial and spatiotemporal distribution information on speciation, using an individual-based ecosystem simulation (Ecosim). For this purpose, using machine learning techniques, we try to predict if one species will split in near future. Because of the imbalanced nature of our dataset we use smote algorithm to make a relatively balanced dataset to avoid dismissing the minor class samples. Experimental results show very good predictions for the test set generated from the same run as the learning set. It also shows good results on test sets generated from different runs of Ecosim. We also observe superior results when we use, for the learning set, a run with more species compare to a run with less species. Finally we can conclude that spatial and spatiotemporal information are very effective in predicting speciation.
基于个体的生态系统模拟研究空间分布和时空信息对物种形成的影响
本文利用基于个体的生态系统模拟(Ecosim),研究了物种的时空分布信息对物种形成的影响。为此,使用机器学习技术,我们试图预测一个物种是否会在不久的将来分裂。由于我们的数据集的不平衡性,我们使用smote算法来制作一个相对平衡的数据集,以避免忽略次要类样本。实验结果表明,通过与学习集相同的运行生成的测试集具有很好的预测效果。它还在不同运行Ecosim生成的测试集上显示了良好的结果。我们还观察到,当我们使用学习集时,与物种较少的运行相比,物种较多的运行效果更好。空间和时空信息对物种形成的预测是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信