Secondary Flow Loss Reduction Method by Use of Endwall Contouring in Gas Turbine Cascade Using Optimization Method

Kazuki Yamamoto, Ryota Uehara, Sho Mizuguchi, Masahiro Miyabe
{"title":"Secondary Flow Loss Reduction Method by Use of Endwall Contouring in Gas Turbine Cascade Using Optimization Method","authors":"Kazuki Yamamoto, Ryota Uehara, Sho Mizuguchi, Masahiro Miyabe","doi":"10.1115/fedsm2021-65787","DOIUrl":null,"url":null,"abstract":"\n High efficiency is strongly demanded for gas turbines to reduce CO2 emissions. In order to improve the efficiency of gas turbines, the turbine inlet temperature is being raised higher. In that case, the turbine blade loading is higher and secondary flow loss becomes a major source of aerodynamic losses due to the interaction between the horseshoe vortex and the strong endwall cross flow. One of the authors have optimized a boundary layer fence which is a partial vane to prevent cross-flow from pressure-side to suction-side between blade to blade. However, it was also found that installing the fence leads to increase another loss due to tip vortex, wake and viscosity. Therefore, in this paper, we focused on the endwall contouring and the positive effect findings from the boundary layer fence were used to study its optimal shape. Firstly, the relationship between the location of the endwall contouring and the internal flow within the turbine cascade was investigated. Two patterns of contouring were made, one is only convex and another is just concave, and the secondary flow behavior of the turbine cascade was investigated respectively. Secondly, the shape was designed and the loss reduction effect was investigated by using optimization method. The optimized shape was manufactured by 3D-printer and experiment was conducted using cascade wind tunnel. The total pressure distributions were measured and compared with CFD results. Furthermore, flow near the endwall and the internal flow of the turbine cascade was experimentally visualized. The internal flow in the case of a flat wall (without contouring), with a fence, and with optimized endwall contouring were compared by experiment and CFD to extract the each feature.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High efficiency is strongly demanded for gas turbines to reduce CO2 emissions. In order to improve the efficiency of gas turbines, the turbine inlet temperature is being raised higher. In that case, the turbine blade loading is higher and secondary flow loss becomes a major source of aerodynamic losses due to the interaction between the horseshoe vortex and the strong endwall cross flow. One of the authors have optimized a boundary layer fence which is a partial vane to prevent cross-flow from pressure-side to suction-side between blade to blade. However, it was also found that installing the fence leads to increase another loss due to tip vortex, wake and viscosity. Therefore, in this paper, we focused on the endwall contouring and the positive effect findings from the boundary layer fence were used to study its optimal shape. Firstly, the relationship between the location of the endwall contouring and the internal flow within the turbine cascade was investigated. Two patterns of contouring were made, one is only convex and another is just concave, and the secondary flow behavior of the turbine cascade was investigated respectively. Secondly, the shape was designed and the loss reduction effect was investigated by using optimization method. The optimized shape was manufactured by 3D-printer and experiment was conducted using cascade wind tunnel. The total pressure distributions were measured and compared with CFD results. Furthermore, flow near the endwall and the internal flow of the turbine cascade was experimentally visualized. The internal flow in the case of a flat wall (without contouring), with a fence, and with optimized endwall contouring were compared by experiment and CFD to extract the each feature.
基于优化方法的燃气轮机叶栅端壁轮廓二次流损失降低方法
为了减少二氧化碳的排放,燃气轮机需要高效率。为了提高燃气轮机的效率,不断提高燃气轮机进口温度。此时涡轮叶片负荷较高,由于马蹄涡与强端壁横流的相互作用,二次流损失成为气动损失的主要来源。为了防止叶片间从压力侧到吸力侧的交叉流动,作者对一种局部叶片的边界层栅栏进行了优化。但同时也发现,由于叶尖涡、尾迹和黏度的影响,安装翼栅会增加另一种损失。因此,本文将重点放在端壁轮廓上,并利用边界层围栏的积极影响结果来研究其最佳形状。首先,研究了端壁轮廓位置与涡轮叶栅内部流动的关系。设计了仅凸型和仅凹型两种型线,分别对涡轮叶栅的二次流动特性进行了研究。其次,采用优化设计方法对其外形进行了设计,并对减损效果进行了研究。利用3d打印机制作出优化后的形状,并利用叶栅风洞进行了实验。测量了总压分布,并与CFD结果进行了比较。此外,还对叶栅端壁附近的流动和内部流动进行了实验可视化。通过实验和CFD对平壁(无轮廓)、有围壁和优化端壁轮廓情况下的内部流动进行了比较,提取了各特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信