KINETIC EVOLUTION OF A 3D SPHERICAL CRYSTAL WITH MOBILE PARTICLESUSING MONTE CARLO - PART II

IF 0.1 Q4 PHYSICS, MULTIDISCIPLINARY
C. L. Di Prinzio, P. I. Achával, D. Stoler, G. AGUIRRE VARELA
{"title":"KINETIC EVOLUTION OF A 3D SPHERICAL CRYSTAL WITH MOBILE PARTICLESUSING MONTE CARLO - PART II","authors":"C. L. Di Prinzio, P. I. Achával, D. Stoler, G. AGUIRRE VARELA","doi":"10.31527/analesafa.2019.30.4.79","DOIUrl":null,"url":null,"abstract":"In this work, the migration of the three-dimensional (3D) spherical crystal in the presence of mobile particles using aMonte Carlo algorithm was studied. Different concentrations of particles (f) and different particles mobilities (Mp)were used. It was found that the grain size reaches a critical radius (Rc) which depends exclusively onf. This dependence can be written as:Rc~f^1/3. The dynamic equation of grain size evolution and its analytical solution were alsofound. The analytical solution successfully fits the simulation results. The particles fraction in the grain boundary wasalso found analytically and it fits with the computational data.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"22 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2019.30.4.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the migration of the three-dimensional (3D) spherical crystal in the presence of mobile particles using aMonte Carlo algorithm was studied. Different concentrations of particles (f) and different particles mobilities (Mp)were used. It was found that the grain size reaches a critical radius (Rc) which depends exclusively onf. This dependence can be written as:Rc~f^1/3. The dynamic equation of grain size evolution and its analytical solution were alsofound. The analytical solution successfully fits the simulation results. The particles fraction in the grain boundary wasalso found analytically and it fits with the computational data.
用蒙特卡罗法研究具有可移动粒子的三维球形晶体的动力学演化。第二部分
在这项工作中,研究了三维(3D)球形晶体在移动粒子存在下的阿蒙卡罗算法的迁移。使用不同浓度的颗粒(f)和不同的颗粒迁移率(Mp)。发现晶粒尺寸达到一个临界半径(Rc),该半径完全取决于。这种相关性可以写成Rc~f^1/3。建立了晶粒尺寸演化的动力学方程及其解析解。解析解与仿真结果吻合较好。通过解析得到了晶界内的颗粒分数,与计算结果吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anales AFA
Anales AFA PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.40
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信