On power law distributions in large-scale taxonomies

Rohit Babbar, Cornelia Metzig, Ioannis Partalas, Éric Gaussier, Massih-Reza Amini
{"title":"On power law distributions in large-scale taxonomies","authors":"Rohit Babbar, Cornelia Metzig, Ioannis Partalas, Éric Gaussier, Massih-Reza Amini","doi":"10.1145/2674026.2674033","DOIUrl":null,"url":null,"abstract":"In many of the large-scale physical and social complex systems phenomena fat-tailed distributions occur, for which different generating mechanisms have been proposed. In this paper, we study models of generating power law distributions in the evolution of large-scale taxonomies such as Open Directory Project, which consist of websites assigned to one of tens of thousands of categories. The categories in such taxonomies are arranged in tree or DAG structured configurations having parent-child relations among them. We first quantitatively analyse the formation process of such taxonomies, which leads to power law distribution as the stationary distributions. In the context of designing classifiers for large-scale taxonomies, which automatically assign unseen documents to leaf-level categories, we highlight how the fat-tailed nature of these distributions can be leveraged to analytically study the space complexity of such classifiers. Empirical evaluation of the space complexity on publicly available datasets demonstrates the applicability of our approach.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"30 1","pages":"47-56"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674026.2674033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In many of the large-scale physical and social complex systems phenomena fat-tailed distributions occur, for which different generating mechanisms have been proposed. In this paper, we study models of generating power law distributions in the evolution of large-scale taxonomies such as Open Directory Project, which consist of websites assigned to one of tens of thousands of categories. The categories in such taxonomies are arranged in tree or DAG structured configurations having parent-child relations among them. We first quantitatively analyse the formation process of such taxonomies, which leads to power law distribution as the stationary distributions. In the context of designing classifiers for large-scale taxonomies, which automatically assign unseen documents to leaf-level categories, we highlight how the fat-tailed nature of these distributions can be leveraged to analytically study the space complexity of such classifiers. Empirical evaluation of the space complexity on publicly available datasets demonstrates the applicability of our approach.
关于大规模分类法中的幂律分布
在许多大规模的物理和社会复杂系统中,都会出现肥尾分布现象,对此人们提出了不同的产生机制。在本文中,我们研究了在大规模分类法(如Open Directory Project)的进化中产生幂律分布的模型,该分类法由分配给数万个类别之一的网站组成。这些分类法中的类别以树形或DAG结构配置排列,它们之间具有父子关系。我们首先定量地分析了这种分类的形成过程,它导致幂律分布作为平稳分布。在为大规模分类法设计分类器的背景下,自动将未见文档分配到叶级类别,我们强调了如何利用这些分布的厚尾特性来分析研究此类分类器的空间复杂性。对公开可用数据集的空间复杂性进行了实证评估,证明了我们的方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信