{"title":"Photonic Crystal Heterostructure Composed of Triangular and Honeycomb Lattice","authors":"C. Guan, D. Mao, Libo Yuan","doi":"10.1109/SOPO.2009.5230058","DOIUrl":null,"url":null,"abstract":"The interface guided modes in a photonic crystal heterostructure composed of a triangular-lattice and a honeycomb-lattice are investigated. The simulation results show that the guided modes can exist in the heterostructure without any shift of the lattices and the number of guided modes strongly depends on the geometric parameters of the heterostructure. Keywords-photonic crystals; heterostructure; interface guided modes The photonic crystal waveguide is expected to hold the key to future all-optical circuits. The interface guided modes can be created by introducing line defects in an ideal photonic crystal (1-4). The photonic crystal heterostructure(PCH) can also produce guided modes in the interface between two lattices with different physical or geometrical parameters (5-7) and provide a new way to form the light waveguide. Assuming that the center frequencies of the photonic band gaps (PBGs) in two different lattices are identical, the interface states will be possibly produced in the interface of the heterostructure composed of these two lattices. A 3D photonic crystal heterostructure was also reported (8). Recently, there has been growing interest on heterostructures formed by metallic photonic crystals (9-10). Therefore, it is an important and interesting topic how to find a new kind of PCH that can produce guided modes without any relative shift of the lattices on either side of the interface of the PCH. In the present paper, a 2D photonic crystal heterostructure with a complete photonic band gap, consisting of circular scatterers, is proposed and the interface guided modes in the heterostructure are investigated in detail.","PeriodicalId":6416,"journal":{"name":"2009 Symposium on Photonics and Optoelectronics","volume":"86 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Symposium on Photonics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOPO.2009.5230058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interface guided modes in a photonic crystal heterostructure composed of a triangular-lattice and a honeycomb-lattice are investigated. The simulation results show that the guided modes can exist in the heterostructure without any shift of the lattices and the number of guided modes strongly depends on the geometric parameters of the heterostructure. Keywords-photonic crystals; heterostructure; interface guided modes The photonic crystal waveguide is expected to hold the key to future all-optical circuits. The interface guided modes can be created by introducing line defects in an ideal photonic crystal (1-4). The photonic crystal heterostructure(PCH) can also produce guided modes in the interface between two lattices with different physical or geometrical parameters (5-7) and provide a new way to form the light waveguide. Assuming that the center frequencies of the photonic band gaps (PBGs) in two different lattices are identical, the interface states will be possibly produced in the interface of the heterostructure composed of these two lattices. A 3D photonic crystal heterostructure was also reported (8). Recently, there has been growing interest on heterostructures formed by metallic photonic crystals (9-10). Therefore, it is an important and interesting topic how to find a new kind of PCH that can produce guided modes without any relative shift of the lattices on either side of the interface of the PCH. In the present paper, a 2D photonic crystal heterostructure with a complete photonic band gap, consisting of circular scatterers, is proposed and the interface guided modes in the heterostructure are investigated in detail.