{"title":"On the Chow ring of the classifying stack of algebraic tori","authors":"Francesco Sala","doi":"10.4171/dm/888","DOIUrl":null,"url":null,"abstract":"We investigate the structure of the Chow ring of the classifying stacks BT of algebraic tori, as it has been defined by B. Totaro. Some previous work of N. Karpenko, A. Merkurjev, S. Blinstein and F. Scavia has shed some light on the structure of such rings. In particular Karpenko showed the absence of torsion classes in the case of permutation tori, while Merkurjev and Blinstein described in a very effective way the second Chow group A2(BT ) in the general case. Building on this work, Scavia exhibited an example where A2(BT )tors 6= 0. Here, by making use of a very elementary approach, we extend the result of Karpenko to special tori and we completely determine the Chow ring A∗(BT ) when T is an algebraic torus admitting a resolution with special tori 0 → T → Q → P . In particular we show that there can be torsion in the Chow ring of such tori.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/888","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the structure of the Chow ring of the classifying stacks BT of algebraic tori, as it has been defined by B. Totaro. Some previous work of N. Karpenko, A. Merkurjev, S. Blinstein and F. Scavia has shed some light on the structure of such rings. In particular Karpenko showed the absence of torsion classes in the case of permutation tori, while Merkurjev and Blinstein described in a very effective way the second Chow group A2(BT ) in the general case. Building on this work, Scavia exhibited an example where A2(BT )tors 6= 0. Here, by making use of a very elementary approach, we extend the result of Karpenko to special tori and we completely determine the Chow ring A∗(BT ) when T is an algebraic torus admitting a resolution with special tori 0 → T → Q → P . In particular we show that there can be torsion in the Chow ring of such tori.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.