{"title":"Brauer–Clifford Group of Lie–Rinehart Algebras","authors":"T. Guédénon","doi":"10.1142/s1005386722000086","DOIUrl":null,"url":null,"abstract":"In this paper we define the notion of Brauer–Clifford group for [Formula: see text]-Azumaya algebras when [Formula: see text] is a commutative algebra and[Formula: see text] is a [Formula: see text]-Lie algebra over a commutative ring [Formula: see text]. This is the situation that arises in applications having connections to differential geometry. This Brauer–Clifford group turns out to be an example of a Brauer group of a symmetric monoidal category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we define the notion of Brauer–Clifford group for [Formula: see text]-Azumaya algebras when [Formula: see text] is a commutative algebra and[Formula: see text] is a [Formula: see text]-Lie algebra over a commutative ring [Formula: see text]. This is the situation that arises in applications having connections to differential geometry. This Brauer–Clifford group turns out to be an example of a Brauer group of a symmetric monoidal category.