Quantitative estimates for the size of an intersection of sparse automatic sets

Seda Albayrak, J. Bell
{"title":"Quantitative estimates for the size of an intersection of sparse automatic sets","authors":"Seda Albayrak, J. Bell","doi":"10.48550/arXiv.2304.09223","DOIUrl":null,"url":null,"abstract":"A theorem of Cobham says that if $k$ and $\\ell$ are two multiplicatively independent natural numbers then a subset of the natural numbers that is both $k$- and $\\ell$-automatic is eventually periodic. A multidimensional extension was later given by Semenov. In this paper, we give a quantitative version of the Cobham-Semenov theorem for sparse automatic sets, showing that the intersection of a sparse $k$-automatic subset of $\\mathbb{N}^d$ and a sparse $\\ell$-automatic subset of $\\mathbb{N}^d$ is finite with size that can be explicitly bounded in terms of data from the automata that accept these sets.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"52 1","pages":"114144"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.09223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A theorem of Cobham says that if $k$ and $\ell$ are two multiplicatively independent natural numbers then a subset of the natural numbers that is both $k$- and $\ell$-automatic is eventually periodic. A multidimensional extension was later given by Semenov. In this paper, we give a quantitative version of the Cobham-Semenov theorem for sparse automatic sets, showing that the intersection of a sparse $k$-automatic subset of $\mathbb{N}^d$ and a sparse $\ell$-automatic subset of $\mathbb{N}^d$ is finite with size that can be explicitly bounded in terms of data from the automata that accept these sets.
稀疏自动集交点大小的定量估计
Cobham的一个定理说,如果$k$和$\ well $是两个相乘独立的自然数,那么同时是$k$-和$\ well $-自动的自然数的子集最终是周期的。后来,Semenov给出了一个多维扩展。本文给出了稀疏自动集的Cobham-Semenov定理的一个定量版本,证明了$\mathbb{N}^d$的稀疏$k$-自动子集与$\mathbb{N}^d$的稀疏$\ell$-自动子集的交集是有限的,其大小可以用接受这些集合的自动机的数据显式地有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信