A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries

J. Zuegge, U. Fechner, O. Roche, N. Parrott, O. Engkvist, G. Schneider
{"title":"A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries","authors":"J. Zuegge, U. Fechner, O. Roche, N. Parrott, O. Engkvist, G. Schneider","doi":"10.1002/1521-3838(200208)21:3<249::AID-QSAR249>3.0.CO;2-S","DOIUrl":null,"url":null,"abstract":"Current virtual screening applications focus not only on biological activity, but also on additional relevant properties of drug candidates, like absorption, distribution, metabolism, and excretion (ADME). In first-pass virtual screening, these prediction systems must be very fast because typically several millions of compounds must be processed. We have developed a linear PLS-based prediction system for binary classification of drug-drug interaction liability caused by cytochrome P450 3A4 inhibition. The system was trained using IC 5 0 values of 311 carefully selected molecules out of a raw data set containing 1152 compounds. It correctly predicts 95% of the training data and 90% of a semi-independent validation data set. The PLS model was calculated from 333 descriptors encoding a molecule. It outperforms an approach utilizing a three layered feed-forward artificial neural network architecture. The average calculation time required for a prediction is less than 0.3 seconds per molecule on a single microprocessor.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200208)21:3<249::AID-QSAR249>3.0.CO;2-S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Current virtual screening applications focus not only on biological activity, but also on additional relevant properties of drug candidates, like absorption, distribution, metabolism, and excretion (ADME). In first-pass virtual screening, these prediction systems must be very fast because typically several millions of compounds must be processed. We have developed a linear PLS-based prediction system for binary classification of drug-drug interaction liability caused by cytochrome P450 3A4 inhibition. The system was trained using IC 5 0 values of 311 carefully selected molecules out of a raw data set containing 1152 compounds. It correctly predicts 95% of the training data and 90% of a semi-independent validation data set. The PLS model was calculated from 333 descriptors encoding a molecule. It outperforms an approach utilizing a three layered feed-forward artificial neural network architecture. The average calculation time required for a prediction is less than 0.3 seconds per molecule on a single microprocessor.
化合物文库对细胞色素P450 3A4抑制能力的快速虚拟筛选过滤器
目前的虚拟筛选应用不仅关注生物活性,还关注候选药物的其他相关特性,如吸收、分布、代谢和排泄(ADME)。在首次虚拟筛选中,这些预测系统必须非常快,因为通常必须处理数百万种化合物。我们开发了一个基于pls的线性预测系统,用于细胞色素P450 3A4抑制引起的药物-药物相互作用的二元分类。从包含1152种化合物的原始数据集中精心挑选311种分子,使用ic50值对该系统进行训练。它正确预测了95%的训练数据和90%的半独立验证数据集。PLS模型由333个描述符编码一个分子计算得到。它优于利用三层前馈人工神经网络架构的方法。在单个微处理器上,预测每个分子所需的平均计算时间不到0.3秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信