Stochastic homogenization of random walks on point processes

IF 1.5 Q2 PHYSICS, MATHEMATICAL
A. Faggionato
{"title":"Stochastic homogenization of random walks on point processes","authors":"A. Faggionato","doi":"10.1214/22-aihp1269","DOIUrl":null,"url":null,"abstract":"We consider random walks on the support of a random purely atomic measure on $\\mathbb{R}^d$ with random jump probability rates. The jump range can be unbounded. The purely atomic measure is reversible for the random walk and stationary for the action of the group $\\mathbb{G}=\\mathbb{R}^d$ or $\\mathbb{G}=\\mathbb{Z}^d$. By combining two-scale convergence and Palm theory for $\\mathbb{G}$-stationary random measures and by developing a cut-off procedure, under suitable second moment conditions we prove for almost all environments the homogenization for the massive Poisson equation of the associated Markov generators. In addition, we obtain the quenched convergence of the $L^2$-Markov semigroup and resolvent of the diffusively rescaled random walk to the corresponding ones of the Brownian motion with covariance matrix $2D$. For symmetric jump rates, the above convergence plays a crucial role in the derivation of hydrodynamic limits when considering multiple random walks with site-exclusion or zero range interaction. We do not require any ellipticity assumption, neither non-degeneracy of the homogenized matrix $D$. Our results cover a large family of models, including e.g. random conductance models on $\\mathbb{Z}^d$ and on general lattices (possibly with long conductances), Mott variable range hopping, simple random walks on Delaunay triangulations, simple random walks on supercritical percolation clusters.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6

Abstract

We consider random walks on the support of a random purely atomic measure on $\mathbb{R}^d$ with random jump probability rates. The jump range can be unbounded. The purely atomic measure is reversible for the random walk and stationary for the action of the group $\mathbb{G}=\mathbb{R}^d$ or $\mathbb{G}=\mathbb{Z}^d$. By combining two-scale convergence and Palm theory for $\mathbb{G}$-stationary random measures and by developing a cut-off procedure, under suitable second moment conditions we prove for almost all environments the homogenization for the massive Poisson equation of the associated Markov generators. In addition, we obtain the quenched convergence of the $L^2$-Markov semigroup and resolvent of the diffusively rescaled random walk to the corresponding ones of the Brownian motion with covariance matrix $2D$. For symmetric jump rates, the above convergence plays a crucial role in the derivation of hydrodynamic limits when considering multiple random walks with site-exclusion or zero range interaction. We do not require any ellipticity assumption, neither non-degeneracy of the homogenized matrix $D$. Our results cover a large family of models, including e.g. random conductance models on $\mathbb{Z}^d$ and on general lattices (possibly with long conductances), Mott variable range hopping, simple random walks on Delaunay triangulations, simple random walks on supercritical percolation clusters.
点过程随机游走的随机均匀化
我们考虑在$\mathbb{R}^d$上具有随机跳跃概率率的随机纯原子测度支持下的随机行走。跳跃范围可以无限。纯原子测度对于随机漫步是可逆的,对于群$\mathbb{G}=\mathbb{R}^d$或$\mathbb{G}=\mathbb{Z}^d$的作用是平稳的。通过结合两尺度收敛和Palm理论的$\mathbb{G}$-平稳随机测度,并通过开发一个截止过程,我们证明了在合适的二阶矩条件下,对于几乎所有环境的相关马尔可夫生成器的大质量泊松方程的均匀化。此外,我们还得到了L^2 -Markov半群的猝灭收敛性,并将扩散重标随机漫步解为具有协方差矩阵$2D的布朗运动的对应解。对于对称跳速,当考虑具有位置排除或零距离相互作用的多重随机游动时,上述收敛性对推导水动力极限起着至关重要的作用。我们不需要任何椭圆性假设,也不需要均匀矩阵D的非简并性。我们的研究结果涵盖了大量的模型,例如$\mathbb{Z}^d$和一般格(可能具有长电导)上的随机电导模型,Mott变量范围跳变,Delaunay三角上的简单随机漫步,超临界渗透簇上的简单随机漫步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信