Some distributional and convergence properties of the finite element method, with applications in nonlinear elastodynamics

J. Oden
{"title":"Some distributional and convergence properties of the finite element method, with applications in nonlinear elastodynamics","authors":"J. Oden","doi":"10.1145/800192.805746","DOIUrl":null,"url":null,"abstract":"Variational methods of approximation have become very popular in recent years among engineers and numerical analysts. In particular, the finite element method has established itself as one of the most powerful techniques available for the approximate solution of boundary-value problems. In the present paper, we outline a number of mathematical properties of the method which are partially responsible for its success; we discuss certain error estimates and convergence results, and we describe some results obtained in applications of the method to a class of nonlinear problems in elastodynamics.","PeriodicalId":72321,"journal":{"name":"ASSETS. Annual ACM Conference on Assistive Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1973-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASSETS. Annual ACM Conference on Assistive Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800192.805746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational methods of approximation have become very popular in recent years among engineers and numerical analysts. In particular, the finite element method has established itself as one of the most powerful techniques available for the approximate solution of boundary-value problems. In the present paper, we outline a number of mathematical properties of the method which are partially responsible for its success; we discuss certain error estimates and convergence results, and we describe some results obtained in applications of the method to a class of nonlinear problems in elastodynamics.
有限元法的一些分布和收敛性质,以及在非线性弹性动力学中的应用
变分逼近法近年来在工程师和数值分析人员中非常流行。特别是,有限元法已经成为求解边值问题最有效的方法之一。在本文中,我们概述了该方法的一些数学性质,这些性质是其成功的部分原因;讨论了某些误差估计和收敛结果,并描述了将该方法应用于一类非线性弹性动力学问题所得到的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信