{"title":"The use of chitosan in the preparation of bioadhesive buccal films: Film-forming ability and sustaining ibuprofen release","authors":"Fadia Mussa, Haytham Mousi, Mahmud S. Treki","doi":"10.4103/liuj.liuj_78_21","DOIUrl":null,"url":null,"abstract":"Aim: Different polymers were introduced into Chitosan bioadhesive buccal films to achieve substantial success in sustaining Ibuprofen release for few hours, with reasonable bioadhesion strength. Design: Thin, isolatable, transparent, and elastic films of these copolymers were prepared. Nineteen formulations have been classified as six systems according to the percentages of hydrocolloids used. Materials and Methods: The films were prepared using the solvent casting technique. Bioadhesion study was conducted using the stomach mucosa of a sacrificed albino rabbit. Hydrocolloids such as Hydroxy Propyl Cellulose (HPC), Chitosan, and Methyl Cellulose (MC), in addition to other polymers, were used in addition to Ibuprofen as a model drug. Results: The mechanical strength and flexibility of the films were confirmed with no signs of breaking down. Selected films composed of about 60% (w/w) HPC were found to show higher tendency to adhere to the stomach mucosa than lower percentages of the same polymer. Chitosan films have released more than 78% of Ibuprofen content in the 1st h of release study. The introduction of MC in these films has led to a slow but continuous increase in the percentage of drugs released, reaching the climax of 82% after 4 h. Conclusion: Films made of formulation (L17) were found to be the most ideal for both releasing appreciable amount of drug (about 98% in 4 h), and their high tendency to adhering to the rabbit mucosa (71.00 Mn/m) giving enough time to exert the drug's effect locally. The mechanism of drug release was found to follow Higuchi's diffusion model for some systems and the classical first-order kinetics for others.","PeriodicalId":18106,"journal":{"name":"Libyan International Medical University Journal","volume":"24 1","pages":"91 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Libyan International Medical University Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/liuj.liuj_78_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aim: Different polymers were introduced into Chitosan bioadhesive buccal films to achieve substantial success in sustaining Ibuprofen release for few hours, with reasonable bioadhesion strength. Design: Thin, isolatable, transparent, and elastic films of these copolymers were prepared. Nineteen formulations have been classified as six systems according to the percentages of hydrocolloids used. Materials and Methods: The films were prepared using the solvent casting technique. Bioadhesion study was conducted using the stomach mucosa of a sacrificed albino rabbit. Hydrocolloids such as Hydroxy Propyl Cellulose (HPC), Chitosan, and Methyl Cellulose (MC), in addition to other polymers, were used in addition to Ibuprofen as a model drug. Results: The mechanical strength and flexibility of the films were confirmed with no signs of breaking down. Selected films composed of about 60% (w/w) HPC were found to show higher tendency to adhere to the stomach mucosa than lower percentages of the same polymer. Chitosan films have released more than 78% of Ibuprofen content in the 1st h of release study. The introduction of MC in these films has led to a slow but continuous increase in the percentage of drugs released, reaching the climax of 82% after 4 h. Conclusion: Films made of formulation (L17) were found to be the most ideal for both releasing appreciable amount of drug (about 98% in 4 h), and their high tendency to adhering to the rabbit mucosa (71.00 Mn/m) giving enough time to exert the drug's effect locally. The mechanism of drug release was found to follow Higuchi's diffusion model for some systems and the classical first-order kinetics for others.