Evidential SVM for binary classification

Md. Eusha Kadir, Pritom Saha Akash, A. Ali, M. Shoyaib, Zerina Begum
{"title":"Evidential SVM for binary classification","authors":"Md. Eusha Kadir, Pritom Saha Akash, A. Ali, M. Shoyaib, Zerina Begum","doi":"10.1109/ICASERT.2019.8934772","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is one of the most popular supervised learning methods for its better performances over diversified applications. SVM constructs a maximum-margin hyperplane and predicts the class of a new incoming data point based on that hyperplane. However, the hyperplane may not give a reliable decision in some cases specially when the training data is imprecise and noisy. To improve this situation, we propose an evidence based binary SVM classifier (EbSVM) where we first identify the sources of information (SoI) and propose a method to generate mass value from these SoIs. Finally, we combine these mass values using DS theory of evidence. An experiment over six benchmark datasets illustrates that EbSVM significantly performs better than the existing state-of-the-art methods.","PeriodicalId":6613,"journal":{"name":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","volume":"35 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASERT.2019.8934772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machine (SVM) is one of the most popular supervised learning methods for its better performances over diversified applications. SVM constructs a maximum-margin hyperplane and predicts the class of a new incoming data point based on that hyperplane. However, the hyperplane may not give a reliable decision in some cases specially when the training data is imprecise and noisy. To improve this situation, we propose an evidence based binary SVM classifier (EbSVM) where we first identify the sources of information (SoI) and propose a method to generate mass value from these SoIs. Finally, we combine these mass values using DS theory of evidence. An experiment over six benchmark datasets illustrates that EbSVM significantly performs better than the existing state-of-the-art methods.
二值分类的证据支持向量机
支持向量机(Support Vector Machine, SVM)因其在多种应用中具有较好的性能而成为目前最受欢迎的监督学习方法之一。支持向量机构造一个最大边界超平面,并基于该超平面预测新输入数据点的类别。然而,在某些情况下,特别是在训练数据不精确和有噪声的情况下,超平面可能无法给出可靠的决策。为了改善这种情况,我们提出了一种基于证据的二元支持向量机分类器(EbSVM),我们首先识别信息源(SoI),并提出了一种从这些SoI中生成质量值的方法。最后,我们使用DS证据理论将这些质量值结合起来。在六个基准数据集上的实验表明,EbSVM的性能明显优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信