The Lie algebra of classical mechanics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. McLachlan, A. Murua
{"title":"The Lie algebra of classical mechanics","authors":"R. McLachlan, A. Murua","doi":"10.3934/jcd.2019017","DOIUrl":null,"url":null,"abstract":"Classical mechanical systems are defined by their kinetic and potential energies. They generate a Lie algebra under the canonical Poisson bracket. This Lie algebra, which is usually infinite dimensional, is useful in analyzing the system, as well as in geometric numerical integration. But because the kinetic energy is quadratic in the momenta, the Lie algebra obeys identities beyond those implied by skew symmetry and the Jacobi identity. Some Poisson brackets, or combinations of brackets, are zero for all choices of kinetic and potential energy, regardless of the dimension of the system. Therefore, we study the universal object in this setting, the `Lie algebra of classical mechanics' modelled on the Lie algebra generated by kinetic and potential energy of a simple mechanical system with respect to the canonical Poisson bracket. We show that it is the direct sum of an abelian algebra $\\mathcal X$, spanned by `modified' potential energies isomorphic to the free commutative nonassociative algebra with one generator, and an algebra freely generated by the kinetic energy and its Poisson bracket with $\\mathcal X$. We calculate the dimensions $c_n$ of its homogeneous subspaces and determine the value of its entropy $\\lim_{n\\to\\infty} c_n^{1/n}$. It is $1.8249\\dots$, a fundamental constant associated to classical mechanics. We conjecture that the class of systems with Euclidean kinetic energy metrics is already free, i.e., the only linear identities satisfied by the Lie brackets of all such systems are those satisfied by the Lie algebra of classical mechanics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Classical mechanical systems are defined by their kinetic and potential energies. They generate a Lie algebra under the canonical Poisson bracket. This Lie algebra, which is usually infinite dimensional, is useful in analyzing the system, as well as in geometric numerical integration. But because the kinetic energy is quadratic in the momenta, the Lie algebra obeys identities beyond those implied by skew symmetry and the Jacobi identity. Some Poisson brackets, or combinations of brackets, are zero for all choices of kinetic and potential energy, regardless of the dimension of the system. Therefore, we study the universal object in this setting, the `Lie algebra of classical mechanics' modelled on the Lie algebra generated by kinetic and potential energy of a simple mechanical system with respect to the canonical Poisson bracket. We show that it is the direct sum of an abelian algebra $\mathcal X$, spanned by `modified' potential energies isomorphic to the free commutative nonassociative algebra with one generator, and an algebra freely generated by the kinetic energy and its Poisson bracket with $\mathcal X$. We calculate the dimensions $c_n$ of its homogeneous subspaces and determine the value of its entropy $\lim_{n\to\infty} c_n^{1/n}$. It is $1.8249\dots$, a fundamental constant associated to classical mechanics. We conjecture that the class of systems with Euclidean kinetic energy metrics is already free, i.e., the only linear identities satisfied by the Lie brackets of all such systems are those satisfied by the Lie algebra of classical mechanics.
经典力学中的李代数
经典机械系统是由它们的动能和势能来定义的。它们在正则泊松括号下生成一个李代数。这种李代数通常是无限维的,在系统分析和几何数值积分中都很有用。但是因为动能在动量上是二次的,李代数遵循的恒等式超越了那些由偏对称和雅可比恒等式所隐含的恒等式。有些泊松括号,或括号的组合,对于所有动能和势能的选择都是零,而不管系统的大小。因此,我们研究了这种情况下的普遍对象,即“经典力学的李代数”,它是在简单力学系统的动能和势能产生的李代数的基础上,对典型泊松括号进行建模的。我们证明了它是一个阿贝尔代数$\mathcal X$的直接和,它是由“修正的”势能张成的,与一个生成器的自由交换非结合代数同构,和一个由动能及其泊松括号与$\mathcal X$自由产生的代数。我们计算了它的齐次子空间的维数$c_n$并确定了它的熵值$\lim_{n\to\infty} c_n^{1/n}$。它是$1.8249\dots$,经典力学中的一个基本常数。我们推测具有欧几里得动能度量的系统是自由的,即所有这类系统的李括号所满足的唯一线性恒等式是经典力学的李代数所满足的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信