Automatic Thrombus Detection in Non-enhanced Computed Tomography Images in Patients With Acute Ischemic Stroke

Patrick Löber, Bernhard Stimpel, Christopher Syben, A. Maier, H. Ditt, P. Schramm, Boy Raczkowski, A. Kemmling
{"title":"Automatic Thrombus Detection in Non-enhanced Computed Tomography Images in Patients With Acute Ischemic Stroke","authors":"Patrick Löber, Bernhard Stimpel, Christopher Syben, A. Maier, H. Ditt, P. Schramm, Boy Raczkowski, A. Kemmling","doi":"10.2312/vcbm.20171245","DOIUrl":null,"url":null,"abstract":"In case of an ischemic stroke, identifying and removing blood clots is crucial for a successful recovery. We present a novel method to automatically detect vascular occlusion in non-enhanced computed tomography (NECT) images. Possible hyperdense thrombus candidates are extracted by thresholding and connected component clustering. A set of different features is computed to describe the objects, and a Random Forest classifier is applied to predict them. Thrombus classification yields 98.7% sensitivity with 6.7 false positives per volume, and 91.1% sensitivity with 2.7 false positives per volume. The classifier assigns a clot probability ≥ 90% for every thrombus with a volume larger than 100 mm3 or with a length above 23 mm, and can be used as a reliable method to detect blood clots. CCS Concepts •Computing methodologies → Classification and regression trees; •Applied computing → Health care information systems;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"27 1","pages":"125-129"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20171245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In case of an ischemic stroke, identifying and removing blood clots is crucial for a successful recovery. We present a novel method to automatically detect vascular occlusion in non-enhanced computed tomography (NECT) images. Possible hyperdense thrombus candidates are extracted by thresholding and connected component clustering. A set of different features is computed to describe the objects, and a Random Forest classifier is applied to predict them. Thrombus classification yields 98.7% sensitivity with 6.7 false positives per volume, and 91.1% sensitivity with 2.7 false positives per volume. The classifier assigns a clot probability ≥ 90% for every thrombus with a volume larger than 100 mm3 or with a length above 23 mm, and can be used as a reliable method to detect blood clots. CCS Concepts •Computing methodologies → Classification and regression trees; •Applied computing → Health care information systems;
急性缺血性脑卒中患者非增强计算机断层图像中的血栓自动检测
在缺血性中风的情况下,识别和清除血凝块对成功恢复至关重要。我们提出了一种在非增强计算机断层扫描(NECT)图像中自动检测血管闭塞的新方法。通过阈值分割和连接成分聚类提取可能的高密度候选血栓。计算一组不同的特征来描述目标,并应用随机森林分类器来预测目标。血栓分类灵敏度为98.7%,每容积6.7个假阳性;灵敏度为91.1%,每容积2.7个假阳性。对于体积大于100mm3或长度大于23mm的血栓,分类器的凝块概率≥90%,可作为检测血栓的可靠方法。•计算方法→分类和回归树;•应用计算→卫生保健信息系统;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信