{"title":"Global metal-ion Binding protein Fingerprint: a Method to Identify Motif-Less metal-ion Binding proteins","authors":"Abhilash Mohan, Sharmila Anishetty, P. Gautam","doi":"10.1142/S0219720010004884","DOIUrl":null,"url":null,"abstract":"Metal-ion binding proteins play a vital role in biological processes. Identifying putative metal-ion binding proteins is through knowledge-based methods. These involve the identification of specific motifs that characterize a specific class of metal-ion binding protein. Metal-ion binding motifs have been identified for the common metal ions. A robust global fingerprint that is useful in identifying a metal-ion binding protein from a non-metal-ion binding protein has not been devised. Such a method will help in identifying novel metal-ion binding proteins and proteins that do not possess a canonical metal-ion binding motif. We have used a set of physico-chemical parameters of metal-ion binding proteins encoded by the genes CzcA, CzcB and CzcD as a training set to supervised classifiers and have been able to identify several other metal ion binding proteins leading us to believe that metal-ion binding proteins have a global fingerprint, which cannot be pinned down to a single feature of the protein sequence.","PeriodicalId":90783,"journal":{"name":"American journal of bioinformatics and computational biology","volume":"26 1","pages":"717-726"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of bioinformatics and computational biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219720010004884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Metal-ion binding proteins play a vital role in biological processes. Identifying putative metal-ion binding proteins is through knowledge-based methods. These involve the identification of specific motifs that characterize a specific class of metal-ion binding protein. Metal-ion binding motifs have been identified for the common metal ions. A robust global fingerprint that is useful in identifying a metal-ion binding protein from a non-metal-ion binding protein has not been devised. Such a method will help in identifying novel metal-ion binding proteins and proteins that do not possess a canonical metal-ion binding motif. We have used a set of physico-chemical parameters of metal-ion binding proteins encoded by the genes CzcA, CzcB and CzcD as a training set to supervised classifiers and have been able to identify several other metal ion binding proteins leading us to believe that metal-ion binding proteins have a global fingerprint, which cannot be pinned down to a single feature of the protein sequence.