P. Darondeau, M. Koutny, Marta Pietkiewicz-Koutny, A. Yakovlev
{"title":"Synthesis of Nets with Step Firing Policies","authors":"P. Darondeau, M. Koutny, Marta Pietkiewicz-Koutny, A. Yakovlev","doi":"10.3233/FI-2009-132","DOIUrl":null,"url":null,"abstract":"The unconstrained step semantics of Petri nets is impractical for simulating and modelling applications. In the past, this inadequacy has been alleviated by introducing various flavours of maximally concurrent semantics, as well as priority orders. In this paper, we introduce a general way of controlling step semantics of Petri nets through step firing policies that restrict the concurrent behaviour of Petri nets and so improve their execution and modelling features. In a nutshell, a step firing policy disables at each marking a subset of enabled steps which could otherwise be executed. We discuss various examples of step firing policies and then investigate the synthesis problem for Petri nets controlled by such policies. Using generalised regions of step transition systems, we provide an axiomatic characterisation of those transition systems which can be realised as reachability graphs of Petri nets controlled by a given step firing policy. We also provide a decision and synthesis algorithm for PT-nets and step firing policies based on linear rewards of steps, where fixing the reward of elementary transitions is part of the synthesis problem. The simplicity of the algorithm supports our claim that the proposed approach is practical.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"52 1","pages":"112-131"},"PeriodicalIF":0.4000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2009-132","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 35
Abstract
The unconstrained step semantics of Petri nets is impractical for simulating and modelling applications. In the past, this inadequacy has been alleviated by introducing various flavours of maximally concurrent semantics, as well as priority orders. In this paper, we introduce a general way of controlling step semantics of Petri nets through step firing policies that restrict the concurrent behaviour of Petri nets and so improve their execution and modelling features. In a nutshell, a step firing policy disables at each marking a subset of enabled steps which could otherwise be executed. We discuss various examples of step firing policies and then investigate the synthesis problem for Petri nets controlled by such policies. Using generalised regions of step transition systems, we provide an axiomatic characterisation of those transition systems which can be realised as reachability graphs of Petri nets controlled by a given step firing policy. We also provide a decision and synthesis algorithm for PT-nets and step firing policies based on linear rewards of steps, where fixing the reward of elementary transitions is part of the synthesis problem. The simplicity of the algorithm supports our claim that the proposed approach is practical.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.