P. Abdulla, M. Atig, Yu-Fang Chen, Bui Phi Diep, Julian T Dolby, Petr Janku, Hsin-hung Lin, L. Holík, Wei-Cheng Wu
{"title":"Efficient handling of string-number conversion","authors":"P. Abdulla, M. Atig, Yu-Fang Chen, Bui Phi Diep, Julian T Dolby, Petr Janku, Hsin-hung Lin, L. Holík, Wei-Cheng Wu","doi":"10.1145/3385412.3386034","DOIUrl":null,"url":null,"abstract":"String-number conversion is an important class of constraints needed for the symbolic execution of string-manipulating programs. In particular solving string constraints with string-number conversion is necessary for the analysis of scripting languages such as JavaScript and Python, where string-number conversion is a part of the definition of the core semantics of these languages. However, solving this type of constraint is very challenging for the state-of-the-art solvers. We propose in this paper an approach that can efficiently support both string-number conversion and other common types of string constraints. Experimental results show that it significantly outperforms other state-of-the-art tools on benchmarks that involves string-number conversion.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
String-number conversion is an important class of constraints needed for the symbolic execution of string-manipulating programs. In particular solving string constraints with string-number conversion is necessary for the analysis of scripting languages such as JavaScript and Python, where string-number conversion is a part of the definition of the core semantics of these languages. However, solving this type of constraint is very challenging for the state-of-the-art solvers. We propose in this paper an approach that can efficiently support both string-number conversion and other common types of string constraints. Experimental results show that it significantly outperforms other state-of-the-art tools on benchmarks that involves string-number conversion.