Real-Time Forecasting Using Mixed-Frequency Vars with Time-Varying Parameters

Markus Heinrich, Magnus Reif
{"title":"Real-Time Forecasting Using Mixed-Frequency Vars with Time-Varying Parameters","authors":"Markus Heinrich, Magnus Reif","doi":"10.2139/ssrn.3529010","DOIUrl":null,"url":null,"abstract":"This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3529010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.
具有时变参数的混频变量实时预测
本文提供了广泛的矢量自回归模型(VAR)的实时预测精度的详细评估,这些模型允许结构变化和不同频率采样的指标。我们通过评估随机波动率的混合频率时变参数VAR (MF-TVP-SV-VAR)来扩展文献。总体而言,MF-TVP-SV-VAR提供了准确的现在和预测,平均而言,优于其竞争对手。我们评估了模型相对于专家预测的准确性,并表明MF-TVP-SV-VAR在这方面提供了更好的通货膨胀预测。此外,利用最优预测池,我们还证明了mf - tpv - sv - var在大衰退以来变得越来越重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信