Structural Evolution of Silicon Carbide Nanopowders during the Sintering Process

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
G. Volkova, O. Doroshkevych, A. Shylo, T. Zelenyak, V. Burkhovetskiy, I. Danilenko, T. Konstantinova
{"title":"Structural Evolution of Silicon Carbide Nanopowders during the Sintering Process","authors":"G. Volkova, O. Doroshkevych, A. Shylo, T. Zelenyak, V. Burkhovetskiy, I. Danilenko, T. Konstantinova","doi":"10.1155/2014/723627","DOIUrl":null,"url":null,"abstract":"Processes of sintering of silicon carbide nanopowder were investigated. Values of density ( g/cm3) and strength ( MPa) were obtained. Within the theory of dispersed systems, the temperature evolution of the materials structure was considered. The relationship between sintering temperature, characteristics of crystal structure and physical properties, in particular, density, and strength of aforementioned ceramics was established. It was concluded that it is necessary to suppress the anomalous diffusion at temperatures above 2080°C.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"78 1","pages":"1-5"},"PeriodicalIF":18.6000,"publicationDate":"2014-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2014/723627","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Processes of sintering of silicon carbide nanopowder were investigated. Values of density ( g/cm3) and strength ( MPa) were obtained. Within the theory of dispersed systems, the temperature evolution of the materials structure was considered. The relationship between sintering temperature, characteristics of crystal structure and physical properties, in particular, density, and strength of aforementioned ceramics was established. It was concluded that it is necessary to suppress the anomalous diffusion at temperatures above 2080°C.
纳米碳化硅粉末在烧结过程中的结构演变
研究了纳米碳化硅粉末的烧结工艺。得到了密度(g/cm3)和强度(MPa)值。在分散体系理论中,考虑了材料结构的温度演化。建立了烧结温度、晶体结构特征与陶瓷物理性能特别是密度和强度之间的关系。结果表明,在2080℃以上的温度下,有必要抑制异常扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信