Laplacian-guided image decolorization

Cosmin Ancuti, C. Ancuti
{"title":"Laplacian-guided image decolorization","authors":"Cosmin Ancuti, C. Ancuti","doi":"10.1109/ICIP.2016.7533132","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel decolorization strategy built on image fusion principles. Decolorization (color-to-grayscale), is an important transformation used in many monochrome image processing applications. We demonstrate that aside from color spatial distribution, local information plays an important role in maintaining the discriminability of the image conversion. Our strategy blends the three color channels R, G, B guided by two weight maps that filter the local transitions and measure the dominant values of the regions using the Laplacian information. In order to minimize artifacts introduced by the weight maps, our fusion approach is designed in a multi-scale fashion, using a Laplacian pyramid decomposition. Additionally, compared with most of the existing techniques our straightforward technique has the advantage to be computationally effective. We demonstrate that our technique is temporal coherent being suitable to decolorize videos. A comprehensive qualitative and also quantitative evaluation based on an objective visual descriptor demonstrates the utility of our decolorization technique.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"13 1","pages":"4107-4111"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we introduce a novel decolorization strategy built on image fusion principles. Decolorization (color-to-grayscale), is an important transformation used in many monochrome image processing applications. We demonstrate that aside from color spatial distribution, local information plays an important role in maintaining the discriminability of the image conversion. Our strategy blends the three color channels R, G, B guided by two weight maps that filter the local transitions and measure the dominant values of the regions using the Laplacian information. In order to minimize artifacts introduced by the weight maps, our fusion approach is designed in a multi-scale fashion, using a Laplacian pyramid decomposition. Additionally, compared with most of the existing techniques our straightforward technique has the advantage to be computationally effective. We demonstrate that our technique is temporal coherent being suitable to decolorize videos. A comprehensive qualitative and also quantitative evaluation based on an objective visual descriptor demonstrates the utility of our decolorization technique.
拉普拉斯引导图像脱色
本文介绍了一种基于图像融合原理的新型脱色策略。脱色(彩色到灰度)是许多单色图像处理应用中使用的重要转换。我们证明除了色彩空间分布外,局部信息在保持图像转换的可分辨性方面起着重要作用。我们的策略混合了三个颜色通道R, G, B,通过两个权重图过滤局部过渡,并使用拉普拉斯信息测量区域的主导值。为了最大限度地减少由权重图引入的伪像,我们的融合方法采用多尺度方式设计,使用拉普拉斯金字塔分解。此外,与大多数现有技术相比,我们的直接技术具有计算效率高的优势。我们证明了我们的技术是时间相干的,适合于脱色视频。基于客观的视觉描述符的综合定性和定量评价证明了我们的脱色技术的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信