Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: Non-symmetric operators and Carleson measure estimates

J. Cavero, S. Hofmann, J. M. Martell, T. Toro
{"title":"Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: Non-symmetric operators and Carleson measure estimates","authors":"J. Cavero, S. Hofmann, J. M. Martell, T. Toro","doi":"10.1090/tran/8148","DOIUrl":null,"url":null,"abstract":"We generalize to the setting of 1-sided chord-arc domains, that is, to domains satisfying the interior Corkscrew and Harnack Chain conditions (these are respectively scale-invariant/quantitative versions of the openness and path-connectedness) and which have an Ahlfors regular boundary, a result of Kenig-Kirchheim-Pipher-Toro, in which Carleson measure estimates for bounded solutions of the equation $Lu=-{\\rm div}(A\\nabla u) = 0$ with $A$ being a real (not necessarily symmetric) uniformly elliptic matrix, imply that the corresponding elliptic measure belongs to the Muckenhoupt $A_\\infty$ class with respect to surface measure on the boundary. We present two applications of this result. In the first one we extend a perturbation result recently proved by Cavero-Hofmann-Martell presenting a simpler proof and allowing non-symmetric coefficients. Second, we prove that if an operator $L$ as above has locally Lipschitz coefficients satisfying certain Carleson measure condition then $\\omega_L\\in A_\\infty$ if and only if $\\omega_{L^\\top}\\in A_\\infty$. As a consequence, we can remove one of the main assumptions in the non-symmetric case of a result of Hofmann-Martell-Toro and show that if the coefficients satisfy a slightly stronger Carleson measure condition the membership of the elliptic measure associated with $L$ to the class $A_\\infty$ yields that the domain is indeed a chord-arc domain.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We generalize to the setting of 1-sided chord-arc domains, that is, to domains satisfying the interior Corkscrew and Harnack Chain conditions (these are respectively scale-invariant/quantitative versions of the openness and path-connectedness) and which have an Ahlfors regular boundary, a result of Kenig-Kirchheim-Pipher-Toro, in which Carleson measure estimates for bounded solutions of the equation $Lu=-{\rm div}(A\nabla u) = 0$ with $A$ being a real (not necessarily symmetric) uniformly elliptic matrix, imply that the corresponding elliptic measure belongs to the Muckenhoupt $A_\infty$ class with respect to surface measure on the boundary. We present two applications of this result. In the first one we extend a perturbation result recently proved by Cavero-Hofmann-Martell presenting a simpler proof and allowing non-symmetric coefficients. Second, we prove that if an operator $L$ as above has locally Lipschitz coefficients satisfying certain Carleson measure condition then $\omega_L\in A_\infty$ if and only if $\omega_{L^\top}\in A_\infty$. As a consequence, we can remove one of the main assumptions in the non-symmetric case of a result of Hofmann-Martell-Toro and show that if the coefficients satisfy a slightly stronger Carleson measure condition the membership of the elliptic measure associated with $L$ to the class $A_\infty$ yields that the domain is indeed a chord-arc domain.
单侧弦弧域上椭圆算子的微扰。第二部分:非对称算子和Carleson测度估计
我们将其推广到单侧弦弧域的设置,即满足内部Corkscrew和Harnack链条件的域(它们分别是开放和路径连通的尺度不变/定量版本),并且具有Ahlfors规则边界,这是keneg - kirchheim - pipher - toro的结果。其中,方程$Lu=-{\rm div}(A\nabla u) = 0$的有界解的Carleson测度估计,其中$A$是一个实数(不一定对称)一致椭圆矩阵,暗示对应的椭圆测度相对于边界上的表面测度属于Muckenhoupt $A_\infty$类。我们提出了这一结果的两个应用。在第一部分中,我们推广了最近由Cavero-Hofmann-Martell证明的一个微扰结果,给出了一个更简单的证明并允许非对称系数。其次,我们证明了如果如上的算子$L$具有局部的Lipschitz系数满足一定的Carleson测度条件,则$\omega_L\in A_\infty$当且仅当$\omega_{L^\top}\in A_\infty$。因此,我们可以去除hofmann - martelll - toro结果的非对称情况下的一个主要假设,并证明如果系数满足稍强的Carleson测度条件,则与$L$相关的椭圆测度对类$A_\infty$的隶属性表明该定域确实是弦弧定域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信