Constrained image restoration with a multinomial prior

B. Calder, L. Linnett, D. Carmichael
{"title":"Constrained image restoration with a multinomial prior","authors":"B. Calder, L. Linnett, D. Carmichael","doi":"10.1109/ICIP.1997.647754","DOIUrl":null,"url":null,"abstract":"A Bayesian image processing model is proposed based on, a Markovian multinomial prior. The technique has application in texture segmentation where its introduction of spatial context can improve segmentation accuracy by 60%. Other applications include general image restoration where 18 dB SNR improvement is possible. In addition, the computational complexity of the system is low, making it ideal as a component part of other systems. We show quantitative experiments to illustrate the performance of the algorithm, and groundtruth examples are provided to show the effect in practice.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"51 1","pages":"259-262 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.647754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Bayesian image processing model is proposed based on, a Markovian multinomial prior. The technique has application in texture segmentation where its introduction of spatial context can improve segmentation accuracy by 60%. Other applications include general image restoration where 18 dB SNR improvement is possible. In addition, the computational complexity of the system is low, making it ideal as a component part of other systems. We show quantitative experiments to illustrate the performance of the algorithm, and groundtruth examples are provided to show the effect in practice.
基于多项式先验的约束图像恢复
提出了一种基于马尔可夫多项式先验的贝叶斯图像处理模型。该技术在纹理分割中得到了应用,在纹理分割中引入空间上下文可以使分割精度提高60%。其他应用包括一般图像恢复,其中18db信噪比的改善是可能的。此外,该系统的计算复杂度较低,使其成为其他系统的理想组成部分。我们通过定量实验来说明该算法的性能,并提供了基真例子来说明该算法在实践中的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信