{"title":"Constrained image restoration with a multinomial prior","authors":"B. Calder, L. Linnett, D. Carmichael","doi":"10.1109/ICIP.1997.647754","DOIUrl":null,"url":null,"abstract":"A Bayesian image processing model is proposed based on, a Markovian multinomial prior. The technique has application in texture segmentation where its introduction of spatial context can improve segmentation accuracy by 60%. Other applications include general image restoration where 18 dB SNR improvement is possible. In addition, the computational complexity of the system is low, making it ideal as a component part of other systems. We show quantitative experiments to illustrate the performance of the algorithm, and groundtruth examples are provided to show the effect in practice.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"51 1","pages":"259-262 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.647754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Bayesian image processing model is proposed based on, a Markovian multinomial prior. The technique has application in texture segmentation where its introduction of spatial context can improve segmentation accuracy by 60%. Other applications include general image restoration where 18 dB SNR improvement is possible. In addition, the computational complexity of the system is low, making it ideal as a component part of other systems. We show quantitative experiments to illustrate the performance of the algorithm, and groundtruth examples are provided to show the effect in practice.