High Order Curvature and Torsion Continuous Trajectory Planning Method for Space Flight Robot

Qi Ruolong, Zhang Wei, Tian Yuanzheng, Xiao Lei
{"title":"High Order Curvature and Torsion Continuous Trajectory Planning Method for Space Flight Robot","authors":"Qi Ruolong, Zhang Wei, Tian Yuanzheng, Xiao Lei","doi":"10.1109/IHMSC.2015.167","DOIUrl":null,"url":null,"abstract":"Aiming at the propulsion disturbance problem brought by the discontinuity of the rotation angular acceleration in the freedom flight course of space robot at microgravity condition, a flight trajectory which conforms to cubic curvature polynomials and cubic torsion polynomials in carrier coordinate of robot in 3D space in the trajectory planning stage. The robot's rotation angular velocity, angular acceleration and angular jerk can be continuous if the robot flies along the robot trajectory. According to the kinematics transform between the carrier coordinate system and the global coordinate system, the flight trajectory in the global coordinate system is a nonlinear transcendental equation set with quadratic integral. Separate polynomial parameters and other parameters separately, using partial differential Jacobi matrix to express the local linear relationship of the gradients of polynomial parameters and the gradients of other parameters, and Newton-Rap son iterative is used to draw near the real solution. At last, all approximate values are got. Thus it is concluded that the functions of the curvature polynomial, the torsion polynomial and the expression of trajectory in the global coordinate. The simulation experiment shows that the trajectory planning method can ensure that the angular velocity of robot is high order continuous at the same time, and effectively avoiding the control disturbance and burden of control system caused by the mutations of command speed, acceleration and jerk.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"19 1","pages":"60-63"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Aiming at the propulsion disturbance problem brought by the discontinuity of the rotation angular acceleration in the freedom flight course of space robot at microgravity condition, a flight trajectory which conforms to cubic curvature polynomials and cubic torsion polynomials in carrier coordinate of robot in 3D space in the trajectory planning stage. The robot's rotation angular velocity, angular acceleration and angular jerk can be continuous if the robot flies along the robot trajectory. According to the kinematics transform between the carrier coordinate system and the global coordinate system, the flight trajectory in the global coordinate system is a nonlinear transcendental equation set with quadratic integral. Separate polynomial parameters and other parameters separately, using partial differential Jacobi matrix to express the local linear relationship of the gradients of polynomial parameters and the gradients of other parameters, and Newton-Rap son iterative is used to draw near the real solution. At last, all approximate values are got. Thus it is concluded that the functions of the curvature polynomial, the torsion polynomial and the expression of trajectory in the global coordinate. The simulation experiment shows that the trajectory planning method can ensure that the angular velocity of robot is high order continuous at the same time, and effectively avoiding the control disturbance and burden of control system caused by the mutations of command speed, acceleration and jerk.
空间飞行机器人高阶曲率和扭转连续轨迹规划方法
针对空间机器人在微重力条件下自由飞行过程中旋转角加速度不连续带来的推进扰动问题,在轨迹规划阶段提出了机器人在三维空间中载体坐标中符合三次曲率多项式和三次扭转多项式的飞行轨迹。当机器人沿机器人轨迹飞行时,机器人的旋转角速度、角加速度和角加速度可以是连续的。根据载体坐标系与全局坐标系之间的运动学变换,飞行器在全局坐标系中的飞行轨迹是一个具有二次积分的非线性超越方程组。将多项式参数与其他参数分开,采用偏微分Jacobi矩阵表示多项式参数的梯度与其他参数的梯度的局部线性关系,并采用Newton-Rap - son迭代逼近实解。最后得到所有的近似值。由此得出曲率多项式、扭转多项式的函数和轨迹在全局坐标下的表达式。仿真实验表明,该轨迹规划方法能够保证机器人角速度同时保持高阶连续,有效避免了指令速度、加速度和加速度突变给控制系统带来的控制干扰和负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信