Building NDStore Through Hierarchical Storage Management and Microservice Processing

Kunal Lillaney, D. Kleissas, Alexander Eusman, E. Perlman, William R. Gray Roncal, J. Vogelstein, R. Burns
{"title":"Building NDStore Through Hierarchical Storage Management and Microservice Processing","authors":"Kunal Lillaney, D. Kleissas, Alexander Eusman, E. Perlman, William R. Gray Roncal, J. Vogelstein, R. Burns","doi":"10.1109/eScience.2018.00037","DOIUrl":null,"url":null,"abstract":"We describe NDStore, a scalable multi-hierarchical data storage deployment for spatial analysis of neuroscience data on the AWS cloud. The system design is inspired by the requirement to maintain high I/O throughput for workloads that build neural connectivity maps of the brain from peta-scale imaging data using computer vision algorithms. We store all our data on the AWS object store S3 to limit our deployment costs. S3 serves as our base-tier of storage. Redis, an in-memory key-value engine, is used as our caching tier. The data is dynamically moved between the different storage tiers based on user access. All programming interfaces to this system are RESTful web-services. We include a performance evaluation that shows that our production system provides good performance for a variety of workloads by combining the assets of multiple cloud services.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"70 1","pages":"223-233"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We describe NDStore, a scalable multi-hierarchical data storage deployment for spatial analysis of neuroscience data on the AWS cloud. The system design is inspired by the requirement to maintain high I/O throughput for workloads that build neural connectivity maps of the brain from peta-scale imaging data using computer vision algorithms. We store all our data on the AWS object store S3 to limit our deployment costs. S3 serves as our base-tier of storage. Redis, an in-memory key-value engine, is used as our caching tier. The data is dynamically moved between the different storage tiers based on user access. All programming interfaces to this system are RESTful web-services. We include a performance evaluation that shows that our production system provides good performance for a variety of workloads by combining the assets of multiple cloud services.
通过分级存储管理和微服务处理构建NDStore
我们描述NDStore,一个可扩展的多层次数据存储部署,用于在AWS云上对神经科学数据进行空间分析。该系统设计的灵感来自于保持高I/O吞吐量的工作负载需求,这些工作负载使用计算机视觉算法从peta级成像数据中构建大脑的神经连接图。我们将所有数据存储在AWS对象存储S3上,以限制部署成本。S3作为我们的基础存储层。Redis,一个内存中的键值引擎,被用作我们的缓存层。数据根据用户访问在不同的存储层之间动态移动。该系统的所有编程接口都是RESTful web服务。我们包含了一个性能评估,该评估显示我们的生产系统通过组合多个云服务的资产为各种工作负载提供了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信