Ontological Multidimensional Data Models and Contextual Data Quality

L. Bertossi, Mostafa Milani
{"title":"Ontological Multidimensional Data Models and Contextual Data Quality","authors":"L. Bertossi, Mostafa Milani","doi":"10.1145/3148239","DOIUrl":null,"url":null,"abstract":"Data quality assessment and data cleaning are context-dependent activities. Motivated by this observation, we propose the Ontological Multidimensional Data Model (OMD model), which can be used to model and represent contexts as logic-based ontologies. The data under assessment are mapped into the context for additional analysis, processing, and quality data extraction. The resulting contexts allow for the representation of dimensions, and multidimensional data quality assessment becomes possible. At the core of a multidimensional context, we include a generalized multidimensional data model and a Datalog± ontology with provably good properties in terms of query answering. These main components are used to represent dimension hierarchies, dimensional constraints, and dimensional rules and define predicates for quality data specification. Query answering relies on and triggers navigation through dimension hierarchies and becomes the basic tool for the extraction of quality data. The OMD model is interesting per se beyond applications to data quality. It allows for a logic-based and computationally tractable representation of multidimensional data, extending previous multidimensional data models with additional expressive power and functionalities.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"32 1","pages":"1 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3148239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Data quality assessment and data cleaning are context-dependent activities. Motivated by this observation, we propose the Ontological Multidimensional Data Model (OMD model), which can be used to model and represent contexts as logic-based ontologies. The data under assessment are mapped into the context for additional analysis, processing, and quality data extraction. The resulting contexts allow for the representation of dimensions, and multidimensional data quality assessment becomes possible. At the core of a multidimensional context, we include a generalized multidimensional data model and a Datalog± ontology with provably good properties in terms of query answering. These main components are used to represent dimension hierarchies, dimensional constraints, and dimensional rules and define predicates for quality data specification. Query answering relies on and triggers navigation through dimension hierarchies and becomes the basic tool for the extraction of quality data. The OMD model is interesting per se beyond applications to data quality. It allows for a logic-based and computationally tractable representation of multidimensional data, extending previous multidimensional data models with additional expressive power and functionalities.
本体多维数据模型与上下文数据质量
数据质量评估和数据清理是依赖于上下文的活动。基于这一观察,我们提出了本体多维数据模型(OMD模型),该模型可用于将上下文建模和表示为基于逻辑的本体。被评估的数据被映射到上下文中,以便进行额外的分析、处理和高质量的数据提取。生成的上下文允许维度的表示,并且多维数据质量评估成为可能。在多维上下文的核心,我们包括一个广义多维数据模型和一个Datalog本体,它们在查询回答方面具有可证明的良好属性。这些主要组件用于表示维度层次结构、维度约束和维度规则,并定义用于质量数据规范的谓词。查询应答依赖并触发维度层次的导航,成为提取高质量数据的基本工具。从应用程序到数据质量,OMD模型本身都很有趣。它允许多维数据的基于逻辑和计算可处理的表示,通过额外的表达能力和功能扩展以前的多维数据模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信