{"title":"Seed Optimization Is No Easier than Optimal Golomb Ruler Design","authors":"Bin Ma, Hongyi Yao","doi":"10.1142/9781848161092_0016","DOIUrl":null,"url":null,"abstract":"Spaced seed is a lter method invented to eciently identify the regions of interest in similarity searches. It is now well known that certain spaced seeds hit (detect) a randomly sampled similarity region with higher probabilities than the others. Assume each position of the similarity region is identity with probability p independently. The seed optimization problem seeks for the optimal seed achieving the highest hit probability with given length and weight. Despite that the problem was previously shown not to be NP-hard, in practice it seems dicult to solve. The only algorithm known to compute the optimal seed is still exhaustive search in exponential time. In this article we put some insight into the hardness of the seed design problem by demonstrating the relation between the seed optimization problem and the optimal Golomb ruler design problem, which is a well known dicult problem in combinatorial design.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"454 1","pages":"133-144"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Spaced seed is a lter method invented to eciently identify the regions of interest in similarity searches. It is now well known that certain spaced seeds hit (detect) a randomly sampled similarity region with higher probabilities than the others. Assume each position of the similarity region is identity with probability p independently. The seed optimization problem seeks for the optimal seed achieving the highest hit probability with given length and weight. Despite that the problem was previously shown not to be NP-hard, in practice it seems dicult to solve. The only algorithm known to compute the optimal seed is still exhaustive search in exponential time. In this article we put some insight into the hardness of the seed design problem by demonstrating the relation between the seed optimization problem and the optimal Golomb ruler design problem, which is a well known dicult problem in combinatorial design.