Extremal Betti numbers of symbolic powers of two-dimensional squarefree monomial ideals

Nguyên Quang Lôc, N. Minh, P. Thuy
{"title":"Extremal Betti numbers of symbolic powers of two-dimensional squarefree monomial ideals","authors":"Nguyên Quang Lôc, N. Minh, P. Thuy","doi":"10.1142/s0218196722500448","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a two-dimensional squarefree monomial ideal in a polynomial ring [Formula: see text], where [Formula: see text] is a field. In this paper, we give explicit formulas for the extremal Betti numbers of the [Formula: see text]th symbolic power of [Formula: see text] for all [Formula: see text]. As a consequence, we characterize the rings [Formula: see text] which are pseudo-Gorenstein as sense of Ene et al. [Pseudo-Gorenstein and level Hibi rings, J. Algebra 431 (2015) 138–161]. We also provide a complete classification for the level property of the second symbolic power [Formula: see text]. In particular, we obtain a new algebraic-property of the unknown Moore graph of degree 57.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"46 1","pages":"1043-1069"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a two-dimensional squarefree monomial ideal in a polynomial ring [Formula: see text], where [Formula: see text] is a field. In this paper, we give explicit formulas for the extremal Betti numbers of the [Formula: see text]th symbolic power of [Formula: see text] for all [Formula: see text]. As a consequence, we characterize the rings [Formula: see text] which are pseudo-Gorenstein as sense of Ene et al. [Pseudo-Gorenstein and level Hibi rings, J. Algebra 431 (2015) 138–161]. We also provide a complete classification for the level property of the second symbolic power [Formula: see text]. In particular, we obtain a new algebraic-property of the unknown Moore graph of degree 57.
二维无平方单项式理想的符号幂的极值贝蒂数
设[公式:见文]是多项式环中的二维无平方单项式理想[公式:见文],其中[公式:见文]是一个域。本文给出了所有[公式:见文]的[公式:见文]的[公式:见文]的[符号幂]的极值贝蒂数的显式公式。因此,我们将伪gorenstein环表征为Ene等人的意义[伪gorenstein和水平Hibi环,J.代数431(2015)138-161]。我们还对第二符号幂的层次属性提供了一个完整的分类[公式:见文]。特别地,我们得到了未知的57次摩尔图的一个新的代数性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信